
Phased Array System Toolbox™

Reference

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Phased Array System Toolbox™ Reference

© COPYRIGHT 2011–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
April 2011 Online only Revised for version 1.0 (Release 2011a)
September 2011 Online only Revised for Version 1.1 (R2011b)
March 2012 Online only Revised for Version 1.2 (R2012a)
September 2012 Online only Revised for Version 1.3 (R2012b)
March 2013 Online only Revised for Version 2.0 (R2013a)
September 2013 Online only Revised for Version 2.1 (R2013b)
March 2014 Online only Revised for Version 2.2 (R2014a)

Contents

Alphabetical List

1

Functions-Alphabetical List

2

v

vi Contents

1

Alphabetical List

matlab.System

Purpose Base class for System objects

Description matlab.System is the base class for System objects. In your class
definition file, you must subclass your object from this base class (or
from another class that derives from this base class). Subclassing
allows you to use the implementation and service methods provided by
this base class to build your object. Type this syntax as the first line
of your class definition file to directly inherit from the matlab.System
base class, where ObjectName is the name of your object:

classdef ObjectName < matlab.System

Note You must set Access=protected for each matlab.System
method you use in your code.

Methods cloneImpl Copy System object

getDiscreteStateImpl Discrete state property values

getNumInputsImpl Number of input arguments
passed to step and setup methods

getNumOutputsImpl Number of outputs returned by
method

infoImpl Information about System
object™

isInactivePropertyImpl Active or inactive flag for
properties

loadObjectImpl Load saved System object from
MAT file

processTunedPropertiesImpl Action when tunable properties
change

releaseImpl Release resources

1-2

matlab.System

resetImpl Reset System object states

saveObjectImpl Save System object in MAT file

setProperties Set property values from
name-value pair inputs

setupImpl Initialize System object

stepImpl System output and state update
equations

validateInputsImpl Validate inputs to step method

validatePropertiesImpl Validate property values

Attributes In addition to the attributes available for MATLAB® objects, you can
apply the following attributes to any property of a custom System object.

Nontunable After an object is locked (after step or setup
has been called), use Nontunable to prevent
a user from changing that property value.
By default, all properties are tunable. The
Nontunable attribute is useful to lock a
property that has side effects when changed.
This attribute is also useful for locking a
property value assumed to be constant during
processing. You should always specifiy
properties that affect the number of input or
output ports as Nontunable.

Logical Use Logical to limit the property value to a
logical, scalar value. Any scalar value that can
be converted to a logical is also valid, such as 0
or 1.

1-3

matlab.System

PositiveInteger Use PositiveInteger to limit the property
value to a positive integer value.

DiscreteState Use DiscreteState to mark a property so it
will display its state value when you use the
getDiscreteState method.

To learn more about attributes, see “Property Attributes” in the
MATLAB Object-Oriented Programming documentation.

Examples Create a Basic System Object

Create a simple System object, AddOne, which subclasses from
matlab.System. You place this code into a MATLAB file, AddOne.m.

classdef AddOne < matlab.System
%ADDONE Compute an output value that increments the input by one

methods (Access=protected)
% stepImpl method is called by the step method.
function y = stepImpl(~,x)

y = x + 1;
end

end
end

Use this object by creating an instance of AddOne, providing an input,
and using the step method.

hAdder = AddOne;
x = 1;
y = step(hAdder,x)

Assign the Nontunable attribute to the InitialValue property, which
you define in your class definition file.

properties (Nontunable)
InitialValue

1-4

matlab.System

end

See Also matlab.system.StringSet | matlab.system.mixin.FiniteSource

How To • “Object-Oriented Programming”

• Class Attributes

• Property Attributes

• “Method Attributes”

• “Define Basic System Objects”

• “Define Property Attributes”

1-5

matlab.System.cloneImpl

Purpose Copy System object

Syntax cloneImpl(obj)

Description cloneImpl(obj) copies a System object by using the saveObjectImpl
and loadObjectImpl methods. The default cloneImpl copies an
object and its current state but does not copy any private or protected
properties. If the object you clone is locked and you use the default
cloneImpl, the new object will also be locked. If you define your own
cloneImpl and the associated saveObjectImpl and loadObjectImpl,
you can specify whether to clone the object’s state and whether to clone
the object’s private and protected properties.

cloneImpl is called by the clone method.

Note You must set Access=protected for this method.

You cannot modify any properties in this method.

Input
Arguments

obj

System object handle of object to clone.

Examples Clone a System Object

Use the cloneImpl method in your class definition file to copy a System
object

methods (Access=protected)
function obj2 = cloneImpl(obj1)

s = saveObject (obj1);
obj2 = loadObject(s);

end
end

See Also saveObjectImpl | saveObjectImpl

1-6

matlab.System.cloneImpl

How To • “Clone System Object”

1-7

matlab.System.getDiscreteStateImpl

Purpose Discrete state property values

Syntax s = getDiscreteStateImpl(obj)

Description s = getDiscreteStateImpl(obj) returns a struct s of state values.
The field names of the struct are the object’s DiscreteState property
names. To restrict or change the values returned by getDiscreteState
method, you can override this getDiscreteStateImpl method.

getDiscreteStatesImpl is called by the getDiscreteState method,
which is called by the setup method.

Note You must set Access=protected for this method.

You cannot modify any properties in this method.

Input
Arguments

obj

System object handle

Output
Arguments

s

Struct of state values.

Examples Get Discrete State Values

Use the getDiscreteStateImpl method in your class definition file to
get the discrete states of the object.

methods (Access=protected)
function s = getDiscreteStateImpl(obj)
end

end

See Also setupImpl

1-8

matlab.System.getDiscreteStateImpl

How To • “Define Property Attributes”

1-9

matlab.System.getNumInputsImpl

Purpose Number of input arguments passed to step and setup methods

Syntax num = getNumInputsImpl(obj)

Description num = getNumInputsImpl(obj) returns the number of inputs num
(excluding the System object handle) expected by the step method.

If your step method has a variable number of inputs (uses varargin),
you should implement the getNumInputsImpl method in your class
definition file. If the number of inputs expected by the step method
is fixed (does not use varargin), the default getNumInputsImpl
determines the required number of inputs directly from the step
method. In this case, you do not need to include getNumInputsImpl in
your class definition file.

getNumInputsImpl is called by the getNumInputs method and by the
setup method if the number of inputs has not been determined already.

Note You must set Access=protected for this method.

You cannot modify any properties in this method.

Input
Arguments

obj

System object handle

Output
Arguments

num

Number of inputs expected by the step method for the specified
object.

Default: 1

Examples Set Number of Inputs

Specify the number of inputs (2, in this case) expected by the step
method.

1-10

matlab.System.getNumInputsImpl

methods (Access=protected)
function num = getNumInputsImpl(obj)

num = 2;
end

end

Set Number of Inputs to Zero

Specify that the step method will not accept any inputs.

methods (Access=protected)
function num = getNumInputsImpl(~)

num = 0;
end

end

See Also setupImpl | stepImpl | getNumOutputsImpl

How To • “Change Number of Step Inputs or Outputs”

1-11

matlab.System.getNumOutputsImpl

Purpose Number of outputs returned by step method

Syntax num = getNumOutputsImpl (obj)

Description num = getNumOutputsImpl (obj) returns the number of outputs
from the step method. The default implementation returns 1
output. To specify a value other than 1, you must use include the
getNumOutputsImpl method in your class definition file.

getNumOutputsImpl is called by the getNumOutputs method, if the
number of outputs has not been determined already.

Note You must set Access=protected for this method.

You cannot modify any properties in this method.

Input
Arguments

obj

System object handle

Output
Arguments

num

Number of outputs to be returned by the step method for the
specified object.

Examples Set Number of Outputs

Specify the number of outputs (2, in this case) returned from the step
method.

methods (Access=protected)
function num = getNumOutputsImpl(obj)

num = 2;
end

end

1-12

matlab.System.getNumOutputsImpl

Set Number of Outputs to Zero

Specify that the step method does not return any outputs.

methods (Access=protected)
function num = getNumOutputsImpl(~)

num = 0;
end

end

See Also stepImpl | getNumInputsImpl | setupImpl

How To • “Change Number of Step Inputs or Outputs”

1-13

matlab.System.infoImpl

Purpose Information about System object

Syntax s = infoImpl(obj,varargin)

Description s = infoImpl(obj,varargin) lets you set up information to return
about the current configuration of a System object obj. This information
is returned in a struct from the info method. The varargin argument
is optional. The default infoImpl method, which is used if you do not
include infoImpl in your class definition file, returns an empty struct.

infoImpl is called by the info method.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

varargin

Allows variable number of inputs

Examples Define info for System object

Define the infoImpl method to return current count information for
info(obj).

methods (Access=protected)
function s = infoImpl(obj)

s = struct('Count',obj.pCount);
end

end

How To • “Define System Object Information”

1-14

matlab.System.isInactivePropertyImpl

Purpose Active or inactive flag for properties

Syntax flag = isInactivePropertyImpl(obj,prop)

Description flag = isInactivePropertyImpl(obj,prop) specifies whether
a public, non-state property is inactive for the current object
configuration. An inactive property is a property that is not relevant to
the object, given the values of other properties. Inactive properties are
not shown if you use the disp method to display object properties. If
you attempt to use public access to directly access or use get or set on
an inactive property, a warning occurs.

isInactiveProperty is called by the disp method and by the get and
set methods.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

prop

Public, non-state property name

Output
Arguments

flag

Logical scalar value indicating whether the input property prop is
inactive for the current object configuration.

Examples Set Inactive Property

Display the InitialValue property only when the
UseRandomInitialValue property value is false.

methods (Access=protected)
function flag = isInactivePropertyImpl(obj,propertyName)

1-15

matlab.System.isInactivePropertyImpl

if strcmp(propertyName,'InitialValue')
flag = obj.UseRandomInitialValue;

else
flag = false;

end
end

end

See Also setProperties

How To • “Hide Inactive Properties”

1-16

matlab.System.loadObjectImpl

Purpose Load saved System object from MAT file

Syntax loadObjectImpl(obj)

Description loadObjectImpl(obj) loads a saved System object, obj, from a
MAT file. Your loadObjectImpl method should correspond to your
saveObjectImpl method to ensure that all saved properties and data
are loaded.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

Examples Load System Object

Load a saved System object. In this case, the object contains a child
object, protected and private properties, and a discrete state.

methods(Access=protected)
function loadObjectImpl(obj, s, wasLocked)

% Load child System objects
obj.child = matlab.System.loadObject(s.child);

% Save protected & private properties
obj.protected = s.protected;
obj.pdependentprop = s.pdependentprop;

% Save state only if locked when saved
if wasLocked

obj.state = s.state;
end

% Call base class method

1-17

matlab.System.loadObjectImpl

loadObjectImpl@matlab.System(obj,s,wasLocked);
end

end

See Also saveObjectImpl

How To • “Load System Object”

• “Save System Object”

1-18

matlab.System.processTunedPropertiesImpl

Purpose Action when tunable properties change

Syntax processTunedPropertiesImpl(obj)

Description processTunedPropertiesImpl(obj) specifies the actions to perform
when one or more tunable property values change. This method is
called as part of the next call to the step method after a tunable
property value changes. A property is tunable only if its Nontunable
attribute is false, which is the default.

processTunedPropertiesImpl is called by the step method.

Note You must set Access=protected for this method.

You cannot modify any tunable properties in this method if its System
object will be used in the Simulink® MATLAB System block.

Tips Use this method when a tunable property affects a different property
value. For example, two property values determine when to calculate
a lookup table. You want to perform that calculation when either
property changes. You also want the calculation to be done only once if
both properties change before the next call to the step method.

Input
Arguments

obj

System object handle

Examples Specify Action When Tunable Property Changes

Use processTunedPropertiesIempl to recalculate the lookup table if
the value of either the NumNotes or MiddleC property changes.

methods (Access=protected)
function processTunedPropertiesImpl(obj)

% Generate a lookup table of note frequencies
obj.pLookupTable = obj.MiddleC * (1+log(1:obj.NumNotes)/log(12))

1-19

matlab.System.processTunedPropertiesImpl

end
end

See Also validatePropertiesImpl | setProperties

How To • “Validate Property and Input Values”

• “Define Property Attributes”

1-20

matlab.System.releaseImpl

Purpose Release resources

Syntax releaseImpl(obj)

Description releaseImpl(obj) releases any resources used by the System object,
such as file handles. This method also performs any necessary
cleanup tasks. To release resources for a System object, you must use
releaseImpl instead of a destructor.

releaseImpl is called by the release method. releaseImpl is also
called when the object is deleted or cleared from memory, or when all
references to the object have gone out of scope.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

Examples Close a File and Release Its Resources

Use the releaseImpl method to close a file.

methods (Access=protected)
function releaseImpl(obj)

fclose(obj.pFileID);
end

end

How To • “Release System Object Resources”

1-21

matlab.System.resetImpl

Purpose Reset System object states

Syntax resetImpl(obj)

Description resetImpl(obj) defines the state reset equations for the System object.
Typically you reset the states to a set of initial values. This is useful for
initialization at the start of simulation.

resetImpl is called by the reset method. It is also called by the setup
method, after the setupImpl method.

Note You must set Access=protected for this method.

Do not use resetImpl to initialize or reset properties. For properties,
use the setupImpl method.

You cannot modify any tunable properties in this method if its System
object will be used in the Simulink MATLAB System block.

Input
Arguments

obj

System object handle

Examples Reset Property Value

Use the reset method to reset the counter pCount property to zero.

methods (Access=protected)
function resetImpl(obj)

obj.pCount = 0;
end

end

See Also releaseImpl

How To • “Reset Algorithm State”

1-22

matlab.System.saveObjectImpl

Purpose Save System object in MAT file

Syntax saveObjectImpl(obj)

Description saveObjectImpl(obj) defines what System object obj property and
state values are saved in a MAT file when a user calls save on that
object. save calls saveObject, which then calls saveObjectImpl. If
you do not define a saveObjectImpl method for your System object
class, only public properties and properties with the DiscreteState
attribute are saved. To save any private or protected properties or state
information, you must define a saveObjectImpl in your class definition
file.

You should save the state of an object only if the object is locked. When
the user loads that saved object, it loads in that locked state.

To save child object information, you use the associated saveObject
method within the saveObjectImpl method.

End users can use load, which calls loadObjectImpl to load a System
object into their workspace.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

Examples Define Property and State Values to Save

Define what is saved for the System object. Call the base class version
of saveObjectImpl to save public properties. Then, save any child
System objects and any protected and private properties. Finally, save
the state, if the object is locked.

methods(Access=protected)
function s = saveObjectImpl(obj)

1-23

matlab.System.saveObjectImpl

s = saveObjectImpl@matlab.System(obj);
s.child = matlab.System.saveObject(obj.child);
s.protected = obj.protected;
s.pdependentprop = obj.pdependentprop;
if isLocked(obj)

s.state = obj.state;
end

end
end

See Also loadObjectImpl

How To • “Save System Object”

• “Load System Object”

1-24

matlab.System.setProperties

Purpose Set property values from name-value pair inputs

Syntax setProperties(obj,numargs,name1,value1,name2,value2,...)
setProperties(obj,numargs,arg1,...,argm,name1,value1,name2,value2,...,

'ValueOnlyPropName1','ValueOnlyPropName2',...,
'ValueOnlyPropNamem')

Description setProperties(obj,numargs,name1,value1,name2,value2,...)
provides the name-value pair inputs to the System object constructor.
Use this syntax if every input must specify both name and value.

Note To allow standard name-value pair handling at construction,
define setProperties for your System object.

setProperties(obj,numargs,arg1,...,argm,name1,value1,name2,value2,...,
'ValueOnlyPropName1','ValueOnlyPropName2',...,
'ValueOnlyPropNamem') provides the value-only inputs, followed by
the name-value pair inputs to the System object during object
construction. Use this syntax if you want to allow users to specify one
or more inputs by their values only.

Input
Arguments

obj

System objectSystem object handle

numargs

Number of inputs passed in by the object constructor

name1,name2,...

Name of property

value1,value2,...

Value of the property

arg1,arg2,...

1-25

matlab.System.setProperties

Value of property (for value-only input to the object constructor)

ValueOnlyPropName1,ValueOnlyPropName2,...

Name of the value-only property

Examples Setup Value-Only Inputs

Set up an object so users can specify value-only inputs for VProp1,
VProp2, and other property values via name-value pairs when
constructing the object. In this example, VProp1 and VProp2 are the
names of value-only properties.

methods
function obj = MyFile(varargin)

setProperties(obj,nargin,varargin{:},'VProp1','VProp2');
end

end

How To • “Set Property Values at Construction Time”

1-26

matlab.System.setupImpl

Purpose Initialize System object

Syntax setupImpl(obj)
setupImpl(obj,input1,input2,...)

Description setupImpl(obj) sets up a System object and implements one-time
tasks that do not depend on any inputs to the stepImpl method for
this object. To acquire resources for a System object, you must use
setupImpl instead of a constructor. setupImpl executes the first time
the stepmethod is called on an object after that object has been created.
It also executes the next time step is called after an object has been
released. You typically use setupImpl to set private properties so they
do not need to be calculated each time stepImpl method is called.

setupImpl(obj,input1,input2,...) sets up a System object using
one or more of the stepImpl input specifications. The number and
order of inputs must match the number and order of inputs defined in
the stepImpl method. You pass the inputs into setupImpl to use the
specifications, such as size and datatypes in the one-time calculations.
You do not use the setupImpl method to set up input values.

setupImpl is called by the setup method, which is done automatically
as the first subtask of the step method on an unlocked System object.

Note You can omit this method from your class definition file if your
System object does not require any setup tasks.

You must set Access=protected for this method.

Do not use setupImpl to initialize or reset states. For states, use the
resetImpl method.

You cannot modify any tunable properties in this method if its System
object will be used in the Simulink MATLAB System block.

1-27

matlab.System.setupImpl

Tips To validate properties or inputs use the validatePropertiesImpl,
validateInputsImpl, or setProperties methods. Do not include
validation in setupImpl.

Input
Arguments

obj

System object handle

input1,input2,...

Inputs to the stepImpl method

Examples Setup a File for Writing

This example shows how to open a file for writing using the setupImpl
method in your class definition file.

methods (Access=protected)
function setupImpl(obj)

obj.pFileID = fopen(obj.Filename,'wb');
if obj.pFileID < 0

error('Opening the file failed');
end

end
end

Check input size

This examples shows how to use setupImpl to check that the size of a
stepImpl method input matches the size of a state property.

properties (Access = private)
myState = [1 2];

end

methods (Access = protected)
function setupImpl(obj,u)

if any(size(obj.myState) ~= size(u))
error('Size of "myState" does not match size of input "u"');

end

1-28

matlab.System.setupImpl

end

function y = stepImpl(obj,u)
y = obj.myState;
obj.myState = u;

end
end

end

See Also validatePropertiesImpl | validateInputsImpl | setProperties

How To • “Initialize Properties and Setup One-Time Calculations”

• “Set Property Values at Construction Time”

1-29

matlab.System.stepImpl

Purpose System output and state update equations

Syntax [output1,output2,...] = stepImpl(obj,input1,input2,...)

Description [output1,output2,...] = stepImpl(obj,input1,input2,...)
defines the algorithm to execute when you call the step method on
the specified object obj. The step method calculates the outputs and
updates the object’s state values using the inputs, properties, and state
update equations.

stepImpl is called by the step method.

Note You must set Access=protected for this method.

Tips The number of input arguments and output arguments must match the
values returned by the getNumInputsImpl and getNumOutputsImpl
methods, respectively

Input
Arguments

obj

System object handle

input1,input2,...

Inputs to the step method

Output
Arguments

output

Output returned from the step method.

Examples Specify System Object Algorithm

Use the stepImpl method to increment two numbers.

methods (Access=protected)
function [y1,y2] = stepImpl(obj,x1,x2)

y1 = x1 + 1;

1-30

matlab.System.stepImpl

y2 = x2 + 1;
end

end

See Also getNumInputsImpl | getNumInputsImpl | getNumOutputsImpl |
validateInputsImpl

How To • “Define Basic System Objects”

• “Change Number of Step Inputs or Outputs”

1-31

matlab.System.validateInputsImpl

Purpose Validate inputs to step method

Syntax validateInputsImpl(obj,input1,input2,...)

Description validateInputsImpl(obj,input1,input2,...) validates inputs to
the step method at the beginning of initialization. Validation includes
checking data types, complexity, cross-input validation, and validity of
inputs controlled by a property value.

validateInputsImpl is called by the setup method before setupImpl.
validateInputsImpl executes only once.

Note You must set Access=protected for this method.

You cannot modify any properties in this method. Use the
processTunedPropertiesImpl method or setupImpl method to modify
properties.

Input
Arguments

obj

System object handle

input1,input2,...

Inputs to the setup method

Examples Validate Input Type

Validate that the input is numeric.

methods (Access=protected)
function validateInputsImpl(~,x)

if ~isnumeric(x)
error('Input must be numeric');

end
end

end

1-32

matlab.System.validateInputsImpl

See Also validatePropertiesImpl | setupImpl

How To • “Validate Property and Input Values”

1-33

matlab.System.validatePropertiesImpl

Purpose Validate property values

Syntax validatePropertiesImpl(obj)

Description validatePropertiesImpl(obj) validates interdependent or
interrelated property values at the beginning of object initialization,
such as checking that the dependent or related inputs are the same size.

validatePropertiesImpl is the first method called by the setup
method. validatePropertiesImpl also is called before the
processTunablePropertiesImpl method.

Note You must set Access=protected for this method.

You cannot modify any properties in this method. Use the
processTunedPropertiesImpl method or setupImpl method to modify
properties.

Input
Arguments

obj

System object handle

Examples Validate a Property

Validate that the useIncrement property is true and that the value of
the increment property is greater than zero.

methods (Access=protected)
function validatePropertiesImpl(obj)

if obj.useIncrement && obj.increment < 0
error('The increment value must be positive');

end
end

end

See Also processTunedPropertiesImpl | setupImpl | validateInputsImpl

1-34

matlab.System.validatePropertiesImpl

How To • “Validate Property and Input Values”

1-35

matlab.system.mixin.FiniteSource

Purpose Finite source mixin class

Description matlab.system.mixin.FiniteSource is a class that defines the isDone
method, which reports the state of a finite data source, such as an audio
file.

To use this method, you must subclass from this class in addition to the
matlab.System base class. Type the following syntax as the first line of
your class definition file, where ObjectName is the name of your object:

classdef ObjectName < matlab.System &...
matlab.system.mixin.FiniteSource

Methods isDoneImpl End-of-data flag

See Also matlab.System

Tutorials • “Define Finite Source Objects”

How To • “Object-Oriented Programming”

• Class Attributes

• Property Attributes

1-36

matlab.system.mixin.FiniteSource.isDoneImpl

Purpose End-of-data flag

Syntax status = isDoneImpl(obj)

Description status = isDoneImpl(obj) indicates if an end-of-data condition has
occurred. The isDone method should return false when data from a
finite source has been exhausted, typically by having read and output
all data from the source. You should also define the result of future
reads from an exhausted source in the isDoneImpl method.

isDoneImpl is called by the isDone method.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

Output
Arguments

status

Logical value, true or false, that indicates if an end-of-data
condition has occurred or not, respectively.

Examples Check for End-of-Data

Set up the isDoneImplmethod in your class definition file so the isDone
method checks whether the object has completed eight iterations.

methods (Access=protected)
function bdone = isDoneImpl(obj)

bdone = obj.NumIters==8;
end

end

See Also matlab.system.mixin.FiniteSource

1-37

matlab.system.mixin.FiniteSource.isDoneImpl

How To • “Define Finite Source Objects”

1-38

matlab.system.StringSet

Purpose Set of valid string values

Description matlab.system.StringSet defines a list of valid string values for a
property. This class validates the string in the property and enables tab
completion for the property value. A StringSet allows only predefined or
customized strings as values for the property.

A StringSet uses two linked properties, which you must define in the
same class. One is a public property that contains the current string
value. This public property is displayed to the user. The other property
is a hidden property that contains the list of all possible string values.
This hidden property should also have the transient attribute so its
value is not saved to disk when you save the System object.

The following considerations apply when using StringSets:

• The string property that holds the current string can have any name.

• The property that holds the StringSet must use the same name as
the string property with the suffix “Set” appended to it. The string
set property is an instance of the matlab.system.StringSet class.

• Valid strings, defined in the StringSet, must be declared using a cell
array. The cell array cannot be empty nor can it have any empty
strings. Valid strings must be unique and are case-insensitive.

• The string property must be set to a valid StringSet value.

Examples Set String Property Values

Set the string property, Flavor, and the StringSet property, FlavorSet
in your class definition file.

properties
Flavor='Chocolate';

end

properties (Hidden,Transient)
FlavorSet = ...

matlab.system.StringSet({'Vanilla','Chocolate'});

1-39

matlab.system.StringSet

end

See Also matlab.System

How To • “Object-Oriented Programming”

• Class Attributes

• Property Attributes

• “Limit Property Values to Finite String Set”

1-40

phased.ADPCACanceller

Purpose Adaptive DPCA (ADPCA) pulse canceller

Description The ADPCACanceller object implements an adaptive displaced phase
center array pulse canceller.

To compute the output signal of the space time pulse canceller:

1 Define and set up your ADPCA pulse canceller. See “Construction”
on page 1-41.

2 Call step to execute the ADPCA algorithm according to the properties
of phased.ADPCACanceller. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.ADPCACanceller creates an adaptive displaced phase
center array (ADPCA) canceller System object, H. This object performs
two-pulse ADPCA processing on the input data.

H = phased.ADPCACanceller(Name,Value) creates an ADPCA object,
H, with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN). See “Properties” on page 1-41 for the
list of available property names.

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-41

phased.ADPCACanceller

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) of the received signal
in hertz as a scalar.

Default: 1

DirectionSource

Source of receiving mainlobe direction

Specify whether the targeting direction for the STAP processor
comes from the Direction property of this object or from an
input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the
targeting direction.

'Input port' An input argument in each invocation of step specifies
the targeting direction.

Default: 'Property'

Direction

Receiving mainlobe direction (degrees)

1-42

phased.ADPCACanceller

Specify the receiving mainlobe direction of the receiving sensor
array as a column vector of length 2. The direction is specified in
the format of [AzimuthAngle; ElevationAngle] (in degrees).
Azimuth angle should be between –180 and 180. Elevation angle
should be between –90 and 90. This property applies when you
set the DirectionSource property to 'Property'.

Default: [0; 0]

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor
comes from the Doppler property of this object or from an input
argument in step. Values of this property are:

'Property' The Doppler property of this object specifies the
Doppler.

'Input port' An input argument in each invocation of step specifies
the Doppler.

Default: 'Property'

Doppler

Targeting Doppler frequency (Hz)

Specify the targeting Doppler of the STAP processor as a scalar.
This property applies when you set the DopplerSource property
to 'Property'.

Default: 0

WeightsOutputPort

Output processing weights

1-43

phased.ADPCACanceller

To obtain the weights used in the STAP processor, set this
property to true and use the corresponding output argument
when invoking step. If you do not want to obtain the weights, set
this property to false.

Default: false

PreDopplerOutput

Output pre-Doppler result

Set this property to true to output the processing result before
applying the Doppler filtering. Set this property to false to
output the processing result after the Doppler filtering.

Default: false

NumGuardCells

Number of guarding cells

Specify the number of guard cells used in the training as an even
integer. This property specifies the total number of cells on both
sides of the cell under test.

Default: 2, indicating that there is one guard cell at both the
front and back of the cell under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in the training as an
even integer. Whenever possible, the training cells are equally
divided before and after the cell under test.

Default: 2, indicating that there is one training cell at both the
front and back of the cell under test

1-44

phased.ADPCACanceller

Methods clone Create ADPCA object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform ADPCA processing on
input data

Process
radar
data cube
using
ADPCA
processor.

Process a radar data cube using an ADPCA processor. The weights are
calculated for the 71st cell of the data cube. Set the look direction to
[0;0] degrees and the Doppler shift to 12980 Hz.

Load radar data file and compute weights

load STAPExampleData;
Hs = phased.ADPCACanceller('SensorArray',STAPEx_HArray,...

'PRF',STAPEx_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'NumTrainingCells',100,...
'WeightsOutputPort',true,...
'DirectionSource','Input port',...
'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);

Create AnglerDoppler System object and plot response

Hresp = phased.AngleDopplerResponse(...
'SensorArray',Hs.SensorArray,...

1-45

phased.ADPCACanceller

'OperatingFrequency',Hs.OperatingFrequency,...
'PRF',Hs.PRF,...
'PropagationSpeed',Hs.PropagationSpeed);

plotResponse(Hresp,w);

References [1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

1-46

phased.ADPCACanceller

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also phased.AngleDopplerResponse | phased.DPCACanceller |
phased.STAPSMIBeamformer | uv2azel | phitheta2azel

1-47

phased.ADPCACanceller.clone

Purpose Create ADPCA object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-48

phased.ADPCACanceller.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-49

phased.ADPCACanceller.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-50

phased.ADPCACanceller.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ADPCACanceller System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-51

phased.ADPCACanceller.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-52

phased.ADPCACanceller.step

Purpose Perform ADPCA processing on input data

Syntax Y = step(H,X,CUTIDX)
Y = step(H,X,CUTIDX,ANG)
Y = step(___ ,DOP)
[Y,W] = step(___)

Description Y = step(H,X,CUTIDX) applies the ADPCA pulse cancellation
algorithm to the input data X. The algorithm calculates the processing
weights according to the range cell specified by CUTIDX. This syntax
is available when the DirectionSource property is 'Property' and
the DopplerSource property is 'Property'. The receiving mainlobe
direction is the Direction property value. The output Y contains the
result of pulse cancellation either before or after Doppler filtering,
depending on the PreDopplerOutput property value.

Y = step(H,X,CUTIDX,ANG) uses ANG as the receiving mainlobe
direction. This syntax is available when the DirectionSource property
is 'Input port' and the DopplerSource property is 'Property'.

Y = step(___ ,DOP) uses DOP as the targeting Doppler frequency. This
syntax is available when the DopplerSource property is 'Input port'.

[Y,W] = step(___) returns the additional output, W, as the processing
weights. This syntax is available when the WeightsOutputPort
property is true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

1-53

phased.ADPCACanceller.step

Input
Arguments

H

Pulse canceller object.

X

Input data. X must be a 3-dimensional M-by-N-by-P numeric
array whose dimensions are (range, channels, pulses).

CUTIDX

Range cell.

ANG

Receiving mainlobe direction. ANG must be a 2-by-1 vector in
the form [AzimuthAngle; ElevationAngle], in degrees. The
azimuth angle must be between –180 and 180. The elevation
angle must be between –90 and 90.

Default: Direction property of H

DOP

Targeting Doppler frequency in hertz. DOP must be a scalar.

Default: Doppler property of H

Output
Arguments

Y

Result of applying pulse cancelling to the input data. The
meaning and dimensions of Y depend on the PreDopplerOutput
property of H:

• If PreDopplerOutput is true, Y contains the pre-Doppler data.
Y is an M-by-(P–1) matrix. Each column in Y represents the
result obtained by cancelling the two successive pulses.

• If PreDopplerOutput is false, Y contains the result of applying
an FFT-based Doppler filter to the pre-Doppler data. The
targeting Doppler is the Doppler property value. Y is a column
vector of length M.

1-54

phased.ADPCACanceller.step

W

Processing weights the pulse canceller used to obtain the
pre-Doppler data. The dimensions of W depend on the
PreDopplerOutput property of H:

• If PreDopplerOutput is true, W is a 2N-by-(P-1) matrix. The
columns in W correspond to successive pulses in X.

• If PreDopplerOutput is false, W is a column vector of length
(N*P).

Examples Process the example radar data cube, STAPExampleData.mat, using
an ADPCA processor. The weights are calculated for the 71st cell
of a collected radar data cube. The look direction is [0; 0] degrees
and the Doppler frequency is 12980 Hz. After constructing the
phased.ADPCACanceller object, use step to process the data.

load STAPExampleData; % load radar data cube
Hs = phased.ADPCACanceller('SensorArray',STAPEx_HArray,...

'PRF',STAPEx_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'NumTrainingCells',100,...
'WeightsOutputPort',true,...
'DirectionSource','Input port',...
'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);

See Also uv2azel | phitheta2azel

1-55

phased.AngleDopplerResponse

Purpose Angle-Doppler response

Description The AngleDopplerResponse object calculates the angle-Doppler
response of input data.

To compute the angle-Doppler response:

1 Define and set up your angle-Doppler response calculator. See
“Construction” on page 1-56.

2 Call step to compute the angle-Doppler response of the input signal
according to the properties of phased.AngleDopplerResponse. The
behavior of step is specific to each object in the toolbox.

Construction H = phased.AngleDopplerResponse creates an angle-Doppler response
System object, H. This object calculates the angle-Doppler response of
the input data.

H = phased.AngleDopplerResponse(Name,Value) creates
angle-Doppler object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Sensor array

Sensor array specified as an array System object belonging to the
phased package. A sensor array can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

1-56

phased.AngleDopplerResponse

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) in hertz of the input
signal as a positive scalar.

Default: 1

ElevationAngleSource

Source of elevation angle

Specify whether the elevation angle comes from the
ElevationAngle property of this object or from an input
argument in step. Values of this property are:

'Property' The ElevationAngle property of this
object specifies the elevation angle.

'Input port' An input argument in each invocation
of step specifies the elevation angle.

Default: 'Property'

ElevationAngle

Elevation angle

Specify the elevation angle in degrees used to calculate
the angle-Doppler response as a scalar. The angle must be

1-57

phased.AngleDopplerResponse

between –90 and 90. This property applies when you set the
ElevationAngleSource property to 'Property'.

Default: 0

NumAngleSamples

Number of samples in angular domain

Specify the number of samples in the angular domain used to
calculate the angle-Doppler response as a positive integer. This
value must be greater than 2.

Default: 256

NumDopplerSamples

Number of samples in Doppler domain

Specify the number of samples in the Doppler domain used to
calculate the angle-Doppler response as a positive integer. This
value must be greater than 2.

Default: 256

Methods clone Create angle-Doppler response
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotResponse Plot angle-Doppler response

1-58

phased.AngleDopplerResponse

release Allow property value and input
characteristics changes

step Calculate angle-Doppler response

Calculate
Angle-Doppler
response

Calculate the angle-Doppler response of the 190th cell of a collected
data cube.

Load data and construct AngleDopplerResponse System object

load STAPExampleData;
x = shiftdim(STAPEx_ReceivePulse(190,:,:));
hadresp = phased.AngleDopplerResponse(...

'SensorArray',STAPEx_HArray,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'PRF',STAPEx_PRF);

Plot Angle-Doppler response

[resp,ang_grid,dop_grid] = step(hadresp,x);
contour(ang_grid,dop_grid,abs(resp))
xlabel('Angle'); ylabel('Doppler');

1-59

phased.AngleDopplerResponse

Algorithms phased.AngleDopplerResponse generates the response using a
conventional beamformer and an FFT-based Doppler filter. For further
details, see [1].

References [1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

1-60

phased.AngleDopplerResponse

See Also phased.ADPCACanceller | phased.DPCACanceller |
phased.STAPSMIBeamformer | uv2azel | phitheta2azel

1-61

phased.AngleDopplerResponse.clone

Purpose Create angle-Doppler response object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-62

phased.AngleDopplerResponse.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-63

phased.AngleDopplerResponse.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-64

phased.AngleDopplerResponse.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
AngleDopplerResponse System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-65

phased.AngleDopplerResponse.plotResponse

Purpose Plot angle-Doppler response

Syntax plotResponse(H,X)
plotResponse(H,X,ELANG)
plotResponse(___ ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,X) plots the angle-Doppler response of the data in X
in decibels. This syntax is available when the ElevationAngleSource
property is 'Property'.

plotResponse(H,X,ELANG) plots the angle-Doppler response calculated
using the specified elevation angle ELANG. This syntax is available when
the ElevationAngleSource property is 'Input port'.

plotResponse(___ ,Name,Value) plots the angle-Doppler response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns the handle of the image in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Angle-Doppler response object.

X

Input data.

ELANG

Elevation angle in degrees.

Default: Value of Elevation property of H

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding

1-66

phased.AngleDopplerResponse.plotResponse

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’NormalizeDoppler’

Set this value to true to normalize the Doppler frequency. Set
this value to false to plot the angle-Doppler response without
normalizing the Doppler frequency.

Default: false

’Unit’

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Plot
Angle-Doppler
Response

Plot the angle-Doppler response of the 190th cell of a collected data cube.

load STAPExampleData;
x = shiftdim(STAPEx_ReceivePulse(190,:,:));
hadresp = phased.AngleDopplerResponse(...

'SensorArray',STAPEx_HArray,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'PRF',STAPEx_PRF);

plotResponse(hadresp,x,'NormalizeDoppler',true);

1-67

phased.AngleDopplerResponse.plotResponse

See Also uv2azel | phitheta2azel

1-68

phased.AngleDopplerResponse.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-69

phased.AngleDopplerResponse.step

Purpose Calculate angle-Doppler response

Syntax [RESP,ANG_GRID,DOP_GRID] = step(H,X)
[RESP,ANG_GRID,DOP_GRID] = step(H,X,ELANG)

Description [RESP,ANG_GRID,DOP_GRID] = step(H,X) calculates the angle-Doppler
response of the data X. RESP is the complex angle-Doppler response.
ANG_GRID and DOP_GRID provide the angle samples and Doppler
samples, respectively, at which the angle-Doppler response is evaluated.
This syntax is available when the ElevationAngleSource property
is 'Property'.

[RESP,ANG_GRID,DOP_GRID] = step(H,X,ELANG) calculates the
angle-Doppler response using the specified elevation angle ELANG.
This syntax is available when the ElevationAngleSource property is
'Input port'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Angle-Doppler response object.

X

Input data as a matrix or column vector.

If X is a matrix, the number of rows in the matrix must equal the
number of elements of the array specified in the SensorArray
property of H.

1-70

phased.AngleDopplerResponse.step

If X is a vector, the number of rows must be an integer multiple of
the number of elements of the array specified in the SensorArray
property of H. In addition, the multiple must be at least 2.

ELANG

Elevation angle in degrees.

Default: Value of Elevation property of H

Output
Arguments

RESP

Complex angle-Doppler response of X. RESP is a P-by-Q matrix. P
is determined by the NumDopplerSamples property of H and Q is
determined by the NumAngleSamples property.

ANG_GRID

Angle samples at which the angle-Doppler response is evaluated.
ANG_GRID is a column vector of length Q.

DOP_GRID

Doppler samples at which the angle-Doppler response is
evaluated. DOP_GRID is a column vector of length P.

Calculate
Angle-Doppler
response

Calculate the angle-Doppler response of the 190th cell of a collected
data cube.

Load data and construct AngleDopplerResponse System object

load STAPExampleData;
x = shiftdim(STAPEx_ReceivePulse(190,:,:));
hadresp = phased.AngleDopplerResponse(...

'SensorArray',STAPEx_HArray,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'PRF',STAPEx_PRF);

Plot Angle-Doppler response

1-71

phased.AngleDopplerResponse.step

[resp,ang_grid,dop_grid] = step(hadresp,x);
contour(ang_grid,dop_grid,abs(resp))
xlabel('Angle'); ylabel('Doppler');

Algorithms phased.AngleDopplerResponse generates the response using a
conventional beamformer and an FFT-based Doppler filter. For further
details, see [1].

1-72

phased.AngleDopplerResponse.step

References [1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

See Also uv2azel | phitheta2azel | azel2uv | azel2phitheta

1-73

phased.ArrayGain

Purpose Sensor array gain

Description The ArrayGain object calculates the array gain for a sensor array. The
array gain is defined as the signal to noise ratio (SNR) improvement
between the array output and the individual channel input, assuming
the noise is spatially white. It is related to the array response but is
not the same.

To compute the SNR gain of the antenna for specified directions:

1 Define and set up your array gain calculator. See “Construction” on
page 1-74.

2 Call step to estimate the gain according to the properties of
phased.ArrayGain. The behavior of step is specific to each object
in the toolbox.

Construction H = phased.ArrayGain creates an array gain System object, H. This
object calculates the array gain of a 2-element uniform linear array for
specified directions.

H = phased.ArrayGain(Name,Value) creates and array-gain object,
H, with the specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Sensor array

Sensor array specified as an array System object belonging to the
phased package. A sensor array can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

1-74

phased.ArrayGain

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

WeightsInputPort

Add input to specify weights

To specify weights, set this property to true and use the
corresponding input argument when you invoke step. If you do
not want to specify weights, set this property to false.

Default: false

Methods clone Create array gain object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Calculate array gain of sensor
array

Definitions Array Gain

The array gain is defined as the signal to noise ratio (SNR) improvement
between the array output and the individual channel input, assuming
the noise is spatially white. You can express the array gain as follows:

1-75

phased.ArrayGain

SNR
SNR

w vsv w

w Nw
s
N

w vv w

w w

H H

H H H

H
out

in






















In this equation:

• w is the vector of weights applied on the sensor array. When you use
phased.ArrayGain, you can optionally specify weights by setting the
WeightsInputPort property to true and specifying the W argument
in the step method syntax.

• v is the steering vector representing the array response toward a
given direction. When you call the step method, the ANG argument
specifies the direction.

• s is the input signal power.

• N is the noise power.

• H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array
gain is the square of the array response normalized by the number
of elements in the array.

Examples Calculate the array gain for a uniform linear array at the direction
of 30 degrees azimuth and 20 degrees elevation. The array operating
frequency is 300 MHz.

ha = phased.ULA(4);
hag = phased.ArrayGain('SensorArray',ha);
g = step(hag,3e8,[30;20]);

References [1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

1-76

phased.ArrayGain

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ArrayResponse | phased.ElementDelay |
phased.SteeringVector

1-77

phased.ArrayGain.clone

Purpose Create array gain object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-78

phased.ArrayGain.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-79

phased.ArrayGain.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-80

phased.ArrayGain.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the ArrayGain
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-81

phased.ArrayGain.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-82

phased.ArrayGain.step

Purpose Calculate array gain of sensor array

Syntax G = step(H,FREQ,ANG)
G = step(H,FREQ,ANG,WEIGHTS)
G = step(H,FREQ,ANG,STEERANGLE)
G = step(H,FREQ,ANG,WEIGHTS,STEERANGLE)

Description G = step(H,FREQ,ANG) returns the array gain G of the array for the
operating frequencies specified in FREQ and directions specified in ANG.

G = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS on
the sensor array. This syntax is available when you set the
WeightsInputPort property to true.

G = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as the
subarray steering angle. This syntax is available when you configure
H so that H.Sensor is an array that contains subarrays, and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

G = step(H,FREQ,ANG,WEIGHTS,STEERANGLE) combines all input
arguments. This syntax is available when you configure H so that
H.WeightsInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
'Time'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Array gain object.

1-83

phased.ArrayGain.step

FREQ

Operating frequencies of array in hertz. FREQ is a row
vector of length L. Typical values are within the range
specified by a property of the sensor element. The element is
H.SensorArray.Element, H.SensorArray.Array.Element, or
H.SensorArray.Subarray.Element, depending on the type of
array. The frequency range property is named FrequencyRange or
FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L
matrix or a column vector of length N. N is the number of
subarrays if H.SensorArray contains subarrays, or the number
of elements otherwise. L is the number of frequencies specified
in FREQ.

If WEIGHTS is a matrix, each column of the matrix represents the
weights at the corresponding frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in
FREQ.

STEERANGLE

1-84

phased.ArrayGain.step

Subarray steering angle in degrees. STEERANGLE can be a
length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180
degrees, and the elevation angle must be between –90 and 90
degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In
this case, the elevation angle is assumed to be 0.

Output
Arguments

G

Gain of sensor array, in decibels. G is an M-by-L matrix. G
contains the gain at the M angles specified in ANG and the L
frequencies specified in FREQ.

Definitions Array Gain

The array gain is defined as the signal to noise ratio (SNR) improvement
between the array output and the individual channel input, assuming
the noise is spatially white. You can express the array gain as follows:

SNR
SNR

w vsv w

w Nw
s
N

w vv w

w w

H H

H H H

H
out

in






















In this equation:

• w is the vector of weights applied on the sensor array. When you use
phased.ArrayGain, you can optionally specify weights by setting the
WeightsInputPort property to true and specifying the W argument
in the step method syntax.

• v is the steering vector representing the array response toward a
given direction. When you call the step method, the ANG argument
specifies the direction.

1-85

phased.ArrayGain.step

• s is the input signal power.

• N is the noise power.

• H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array
gain is the square of the array response normalized by the number
of elements in the array.

Examples Construct a uniform linear array with six elements. The array operates
at 1 GHz and the array elements are spaced at one half the operating
frequency wavelength. Find the array gain in decibels for the direction
45 degrees azimuth and 10 degrees elevation.

% operating frequency 1 GHz
fc = 1e9;
% 1 GHz wavelength
lambda = physconst('LightSpeed')/fc;
% construct the ULA
hULA = phased.ULA('NumElements',6,'ElementSpacing',lambda/2);
% construct the array gain object with the ULA as the sensor array
hgain = phased.ArrayGain('SensorArray',hULA);
% use step method to determine array gain at the specified
% operating frequency and angle
arraygain = step(hgain,fc,[45;10]);
% array gain is approximately -17.93 dB

See Also uv2azel | phitheta2azel

1-86

phased.ArrayResponse

Purpose Sensor array response

Description The ArrayResponse object calculates the complex-valued response of
a sensor array.

To compute the response of the array for specified directions:

1 Define and set up your array response calculator. See “Construction”
on page 1-87.

2 Call step to estimate the response according to the properties of
phased.ArrayResponse. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.ArrayResponse creates an array response System object,
H. This object calculates the response of a sensor array for the specified
directions. By default, a 2-element uniform linear array (ULA) is used.

H = phased.ArrayResponse(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array used to calculate response

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-87

phased.ArrayResponse

Default: Speed of light

WeightsInputPort

Add input to specify weights

To specify weights, set this property to true and use the
corresponding input argument when you invoke step. If you do
not want to specify weights, set this property to false.

Default: false

EnablePolarization

Enable polarization simulation

Set this property to true to let the array response simulate
polarization. Set this property to false to ignore polarization.
This property applies only when the array specified in the
SensorArray property is capable of simulating polarization.

Default: false

Methods clone Create array response object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Calculate array response of
sensor array

1-88

phased.ArrayResponse

Plot Array
Response

Calculate array response for a 4-element uniform linear array (ULA) in
the direction of 30 degrees azimuth and 20 degrees elevation. Assume
the array’s operating frequency is 300 MHz.

Construct ULA and ArrayResponse System objects

ha = phased.ULA(4);
har = phased.ArrayResponse('SensorArray',ha);
resp = step(har,3e8,[30;20]);

Plot the array response in dB

By default, the plot has a normalized power and is taken as an azimuth
cut at 0 degrees elevation.

plotResponse(ha,3e8,physconst('LightSpeed'));

1-89

phased.ArrayResponse

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ArrayGain | phased.ElementDelay |
phased.ConformalArray/plotResponse | phased.ULA/plotResponse
| phased.URA/plotResponse | phased.SteeringVector

1-90

phased.ArrayResponse.clone

Purpose Create array response object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-91

phased.ArrayResponse.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-92

phased.ArrayResponse.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-93

phased.ArrayResponse.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the ArrayResponse
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-94

phased.ArrayResponse.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-95

phased.ArrayResponse.step

Purpose Calculate array response of sensor array

Syntax RESP = step(H,FREQ,ANG)
RESP = step(H,FREQ,ANG,WEIGHTS)
RESP = step(H,FREQ,ANG,STEERANGLE)
RESP = step(H,FREQ,ANG,WEIGHTS,STEERANGLE)

Description RESP = step(H,FREQ,ANG) returns the array response RESP at
operating frequencies specified in FREQ and directions specified in ANG.

RESP = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS
on the sensor array. This syntax is available when you set the
WeightsInputPort property to true.

RESP = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as
the subarray steering angle. This syntax is available when you
configure H so that H.Sensor is an array that contains subarrays, and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

RESP = step(H,FREQ,ANG,WEIGHTS,STEERANGLE) combines all input
arguments. This syntax is available when you configure H so that
H.WeightsInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
'Time'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Array response object.

1-96

phased.ArrayResponse.step

FREQ

Operating frequencies of array in hertz. FREQ is a row
vector of length L. Typical values are within the range
specified by a property of the sensor element. The element is
H.SensorArray.Element, H.SensorArray.Array.Element, or
H.SensorArray.Subarray.Element, depending on the type of
array. The frequency range property is named FrequencyRange or
FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.
The element has zero response at frequencies outside that range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L
matrix or a column vector of length N. N is the number of
subarrays if H.SensorArray contains subarrays, or the number
of elements otherwise. L is the number of frequencies specified
in FREQ.

If WEIGHTS is a matrix, each column of the matrix represents the
weights at the corresponding frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in
FREQ.

STEERANGLE

1-97

phased.ArrayResponse.step

Subarray steering angle in degrees. STEERANGLE can be a
length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180
degrees, and the elevation angle must be between –90 and 90
degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In
this case, the elevation angle is assumed to be 0.

Output
Arguments

RESP

Voltage response of the sensor array. The response depends on
whether the EnablePolarization property is set to true or
false.

• If the EnablePolarization property is set to false, the voltage
response, RESP, has the dimensions M-by-L. M represents the
number of angles specified in the input argument ANG while L
represents the number of frequencies specified in FREQ.

• If the EnablePolarization property is set to true, the voltage
response, RESP, is a MATLAB struct containing two fields,
RESP.H and RESP.V. The RESP.H field represents the array’s
horizontal polarization response, while RESP.V represents
the array’s vertical polarization response. Each field has
the dimensions M-by-L. M represents the number of angles
specified in the input argument, ANG, while L represents the
number of frequencies specified in FREQ.

Examples Find the array response for a 6-element uniform linear array operating
at 1 GHz. The array elements are spaced at one half the operating
frequency wavelength. The incident angle is 45 degrees azimuth and
10 degrees elevation.

fc = 1e9;
% 1 GHz wavelength
lambda = physconst('LightSpeed')/fc;

1-98

phased.ArrayResponse.step

% construct the ULA
hULA = phased.ULA('NumElements',6,'ElementSpacing',lambda/2);
% construct array response object with the ULA as sensor array
har = phased.ArrayResponse('SensorArray',hULA);
% use step to obtain array response at 1 GHz for an incident
% angle of 45 degrees azimuth and 10 degrees elevation
resp = step(har,fc,[45;10]);

See Also uv2azel | phitheta2azel

1-99

phased.BarrageJammer

Purpose Barrage jammer

Description The BarrageJammer object implements a white Gaussian noise jammer.

To obtain the jamming signal:

1 Define and set up your barrage jammer. See “Construction” on page
1-100.

2 Call step to compute the jammer output according to the properties
of phased.BarrageJammer. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.BarrageJammer creates a barrage jammer System object, H.
This object generates a complex white Gaussian noise jamming signal.

H = phased.BarrageJammer(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.BarrageJammer(E,Name,Value) creates a barrage jammer
object, H, with the ERP property set to E and other specified property
Names set to the specified Values.

Properties ERP

Effective radiated power

Specify the effective radiated power (ERP) (in watts) of the
jamming signal as a positive scalar.

Default: 5000

SamplesPerFrameSource

Source of number of samples per frame

1-100

phased.BarrageJammer

Specify whether the number of samples of the jamming signal
comes from the SamplesPerFrame property of this object or from
an input argument in step. Values of this property are:

'Property' The SamplesPerFrame property of
this object specifies the number of
samples of the jamming signal.

'Input port' An input argument in each invocation
of step specifies the number of
samples of the jamming signal.

Default: 'Property'

SamplesPerFrame

Number of samples per frame

Specify the number of samples in the output jamming signal
as a positive integer. This property applies when you set the
SamplesPerFrameSource property to 'Property'.

Default: 100

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this
property are:

1-101

phased.BarrageJammer

'Auto' The default MATLAB random number
generator produces the random numbers.
Use 'Auto' if you are using this object
with Parallel Computing Toolbox™
software.

'Property' The object uses its own private random
number generator to produce random
numbers. The Seed property of this object
specifies the seed of the random number
generator. Use 'Property' if you want
repeatable results and are not using this
object with Parallel Computing Toolbox
software.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232–1. This property applies when you set
the SeedSource property to 'Property'.

Default: 0

Methods clone Create barrage jammer object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

1-102

phased.BarrageJammer

release Allow property value and input
characteristics changes

reset Reset random number generator
for noise generation

step Generate noise jamming signal

Plot
Barrage
Jammer
Output

Create a barrage jammer with an effective radiated power of 1000W.
Then plot the magnitude of the jammer output. Your plot might vary
because of random numbers.

Hjammer = phased.BarrageJammer('ERP',1000);
x = step(Hjammer);
plot(abs(x)); xlabel('Samples'); ylabel('Magnitude');

1-103

phased.BarrageJammer

References [1] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also phased.Platform | phased.RadarTarget

1-104

phased.BarrageJammer.clone

Purpose Create barrage jammer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-105

phased.BarrageJammer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-106

phased.BarrageJammer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-107

phased.BarrageJammer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the BarrageJammer
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-108

phased.BarrageJammer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-109

phased.BarrageJammer.reset

Purpose Reset random number generator for noise generation

Syntax reset(H)

Description reset(H) resets the states of the BarrageJammer object, H. This method
resets the random number generator state if the SeedSource property
is set to 'Property'.

1-110

phased.BarrageJammer.step

Purpose Generate noise jamming signal

Syntax Y = step(H)
Y = step(H,N)

Description Y = step(H) returns a column vector, Y, that is a complex white
Gaussian noise jamming signal. The power of the jamming signal is
specified by the ERP property. The length of the jamming signal is
specified by the SamplesPerFrame property. This syntax is available
when the SamplesPerFrameSource property is 'Property'.

Y = step(H,N) returns the jamming signal with length N. This syntax
is available when the SamplesPerFrameSource property is 'Input
port'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Plot
Barrage
Jammer
Output

Create a barrage jammer with an effective radiated power of 1000W.
Then plot the magnitude of the jammer output. Your plot might vary
because of random numbers.

Hjammer = phased.BarrageJammer('ERP',1000);
x = step(Hjammer);
plot(abs(x)); xlabel('Samples'); ylabel('Magnitude');

1-111

phased.BarrageJammer.step

1-112

phased.BeamscanEstimator

Purpose Beamscan spatial spectrum estimator for ULA

Description The BeamscanEstimator object calculates a beamscan spatial spectrum
estimate for a uniform linear array.

To estimate the spatial spectrum:

1 Define and set up your beamscan spatial spectrum estimator. See
“Construction” on page 1-113.

2 Call step to estimate the spatial spectrum according to the properties
of phased.BeamscanEstimator. The behavior of step is specific to
each object in the toolbox.

Construction H = phased.BeamscanEstimator creates a beamscan spatial spectrum
estimator System object, H. The object estimates the incoming signal’s
spatial spectrum using a narrowband conventional beamformer for a
uniform linear array (ULA).

H = phased.BeamscanEstimator(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-113

phased.BeamscanEstimator

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to
estimate the covariance matrix as a nonnegative integer. Each
additional smoothing handles one extra coherent source, but
reduces the effective number of elements by 1. The maximum
value of this property is M–2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

ScanAngles

Scan angles

Specify the scan angles (in degrees) as a real vector. The angles
are broadside angles and must be between –90 and 90, inclusive.
You must specify the angles in ascending order.

1-114

phased.BeamscanEstimator

Default: -90:90

DOAOutputPort

Enable DOA output

To obtain the signal’s direction of arrival (DOA), set this property
to true and use the corresponding output argument when
invoking step. If you do not want to obtain the DOA, set this
property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a
positive scalar integer. This property applies when you set the
DOAOutputPort property to true.

Default: 1

Methods clone Create beamscan spatial
spectrum estimator object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotSpectrum Plot spatial spectrum

release Allow property value and input
characteristics changes

1-115

phased.BeamscanEstimator

reset Reset states of beamscan spatial
spectrum estimator object

step Perform spatial spectrum
estimation

Estimate
Directions
of Arrival
of Two
Signals

Create the signals and solve for the DOA’s

Estimate the DOA’s of two signals received by a 10-element ULA with
element spacing of 1 meter. The antenna operating frequency is 150
MHz. The actual direction of the first signal is 10 degrees in azimuth
and 20 degrees in elevation. The direction of the second signal is 60
degrees in azimuth and -5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.BeamscanEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

[y,doas] = step(hdoa,x+noise);
doas = broadside2az(sort(doas),[20 -5])

doas =

9.5829 60.3813

Plot the beamscan spectrum

plotSpectrum(hdoa);

1-116

phased.BeamscanEstimator

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002, pp. 1142–1143.

See Also broadside2az | phased.BeamscanEstimator2D

1-117

phased.BeamscanEstimator.clone

Purpose Create beamscan spatial spectrum estimator object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-118

phased.BeamscanEstimator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-119

phased.BeamscanEstimator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-120

phased.BeamscanEstimator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
BeamscanEstimator System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-121

phased.BeamscanEstimator.plotSpectrum

Purpose Plot spatial spectrum

Syntax plotSpectrum(H)
plotSpectrum(H,Name,Value)
h = plotSpectrum(___)

Description plotSpectrum(H) plots the spatial spectrum resulting from the last call
of the step method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with
additional options specified by one or more Name,Value pair
arguments.

h = plotSpectrum(___) returns the line handle in the figure.

Input
Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’NormalizeResponse’

Set this value to true to plot the normalized spectrum. Set this
value to false to plot the spectrum without normalizing it.

Default: false

’Title’

String to use as title of figure.

Default: Empty string

1-122

phased.BeamscanEstimator.plotSpectrum

’Unit’

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Estimate
Directions
of Arrival
of Two
Signals

Create the signals and solve for the DOA’s

Estimate the DOA’s of two signals received by a 10-element ULA with
element spacing of 1 meter. The antenna operating frequency is 150
MHz. The actual direction of the first signal is 10 degrees in azimuth
and 20 degrees in elevation. The direction of the second signal is 60
degrees in azimuth and -5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.BeamscanEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

[y,doas] = step(hdoa,x+noise);
doas = broadside2az(sort(doas),[20 -5])

doas =

9.5829 60.3813

Plot the beamscan spectrum

plotSpectrum(hdoa);

1-123

phased.BeamscanEstimator.plotSpectrum

1-124

phased.BeamscanEstimator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-125

phased.BeamscanEstimator.reset

Purpose Reset states of beamscan spatial spectrum estimator object

Syntax reset(H)

Description reset(H) resets the states of the BeamscanEstimator object, H.

1-126

phased.BeamscanEstimator.step

Purpose Perform spatial spectrum estimation

Syntax Y = step(H,X)
[Y,ANG] = step(H,X)

Description Y = step(H,X) estimates the spatial spectrum from X using the
estimator, H. X is a matrix whose columns correspond to channels. Y is
a column vector representing the magnitude of the estimated spatial
spectrum.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s
direction of arrival (DOA) when the DOAOutputPort property is true.
ANG is a row vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 60 degrees in azimuth and -5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
noise = 0.1*(randn(size(x))+1i*randn(size(x)));

1-127

phased.BeamscanEstimator.step

hdoa = phased.BeamscanEstimator('SensorArray',ha,...
'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

[y,doas] = step(hdoa,x+noise);
doas = broadside2az(sort(doas),[20 -5]);

See Also azel2uv | azel2phitheta

1-128

phased.BeamscanEstimator2D

Purpose 2-D beamscan spatial spectrum estimator

Description The BeamscanEstimator2D object calculates a 2-D beamscan spatial
spectrum estimate.

To estimate the spatial spectrum:

1 Define and set up your 2-D beamscan spatial spectrum estimator.
See “Construction” on page 1-129.

2 Call step to estimate the spatial spectrum according to the properties
of phased.BeamscanEstimator2D. The behavior of step is specific to
each object in the toolbox.

Construction H = phased.BeamscanEstimator2D creates a 2-D beamscan spatial
spectrum estimator System object, H. The object estimates the signal’s
spatial spectrum using a narrowband conventional beamformer.

H = phased.BeamscanEstimator2D(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-129

phased.BeamscanEstimator2D

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

AzimuthScanAngles

Azimuth scan angles

Specify the azimuth scan angles (in degrees) as a real vector. The
angles must be between –180 and 180, inclusive. You must specify
the angles in ascending order.

Default: -90:90

ElevationScanAngles

Elevation scan angles

Specify the elevation scan angles (in degrees) as a real vector or
scalar. The angles must be within [–90 90]. You must specify the
angles in an ascending order.

Default: 0

1-130

phased.BeamscanEstimator2D

DOAOutputPort

Enable DOA output

To obtain the signal’s direction of arrival (DOA), set this property
to true and use the corresponding output argument when
invoking step. If you do not want to obtain the DOA, set this
property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a
positive scalar integer. This property applies when you set the
DOAOutputPort property to true.

Default: 1

Methods clone Create 2-D beamscan spatial
spectrum estimator object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotSpectrum Plot spatial spectrum

release Allow property value and input
characteristics changes

1-131

phased.BeamscanEstimator2D

reset Reset states of 2-D beamscan
spatial spectrum estimator object

step Perform spatial spectrum
estimation

Estimate
the DOAs
of Two
Signals

Create the signals and solve for the DOA’s

Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is -37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees in
azimuth and 20 degrees in elevation.

ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
lambda = physconst('LightSpeed')/fc;
ang1 = [-37; 0]; ang2 = [17; 20];
x = sensorsig(getElementPosition(ha)/lambda,8000,[ang1 ang2],0.2);
hdoa = phased.BeamscanEstimator2D('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

[~,doas] = step(hdoa,x)

doas =

-37 17
0 20

Plot the beamscan spatial spectrum

plotSpectrum(hdoa);

1-132

phased.BeamscanEstimator2D

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.BeamscanEstimator | uv2azel | phitheta2azel

1-133

phased.BeamscanEstimator2D.clone

Purpose Create 2-D beamscan spatial spectrum estimator object with same
property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-134

phased.BeamscanEstimator2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-135

phased.BeamscanEstimator2D.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-136

phased.BeamscanEstimator2D.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
BeamscanEstimator2D System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-137

phased.BeamscanEstimator2D.plotSpectrum

Purpose Plot spatial spectrum

Syntax plotSpectrum(H)
plotSpectrum(H,Name,Value)
h = plotSpectrum(___)

Description plotSpectrum(H) plots the spatial spectrum resulting from the last call
of the step method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with
additional options specified by one or more Name,Value pair
arguments.

h = plotSpectrum(___) returns the line handle in the figure.

Input
Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’NormalizeResponse’

Set this value to true to plot the normalized spectrum. Set this
value to false to plot the spectrum without normalizing it.

Default: false

’Title’

String to use as title of figure.

Default: Empty string

1-138

phased.BeamscanEstimator2D.plotSpectrum

’Unit’

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Estimate
the DOAs
of Two
Signals

Create the signals and solve for the DOA’s

Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is -37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees in
azimuth and 20 degrees in elevation.

ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
lambda = physconst('LightSpeed')/fc;
ang1 = [-37; 0]; ang2 = [17; 20];
x = sensorsig(getElementPosition(ha)/lambda,8000,[ang1 ang2],0.2);
hdoa = phased.BeamscanEstimator2D('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

[~,doas] = step(hdoa,x)

doas =

-37 17
0 20

Plot the beamscan spatial spectrum

plotSpectrum(hdoa);

1-139

phased.BeamscanEstimator2D.plotSpectrum

1-140

phased.BeamscanEstimator2D.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-141

phased.BeamscanEstimator2D.reset

Purpose Reset states of 2-D beamscan spatial spectrum estimator object

Syntax reset(H)

Description reset(H) resets the states of the BeamscanEstimator2D object, H.

1-142

phased.BeamscanEstimator2D.step

Purpose Perform spatial spectrum estimation

Syntax Y = step(H,X)
[Y,ANG] = step(H,X)

Description Y = step(H,X) estimates the spatial spectrum from X using the
estimator H. X is a matrix whose columns correspond to channels. Y
is a matrix representing the magnitude of the estimated 2-D spatial
spectrum. Y has a row dimension equal to the number of elevation
angles specified in ElevationScanAngles and a column dimension
equal to the number of azimuth angles specified in AzimuthScanAngles.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s
direction of arrival (DOA) when the DOAOutputPort property is true.
ANG is a two row matrix where the first row represents the estimated
azimuth and the second row represents the estimated elevation (in
degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is –37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees in
azimuth and 20 degrees in elevation.

ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;

1-143

phased.BeamscanEstimator2D.step

lambda = physconst('LightSpeed')/fc;
ang1 = [-37; 0]; ang2 = [17; 20];
x = sensorsig(getElementPosition(ha)/lambda,8000,[ang1 ang2],0.2);
hdoa = phased.BeamscanEstimator2D('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

[~,doas] = step(hdoa,x);

See Also azel2uv | azel2phitheta

1-144

phased.BeamspaceESPRITEstimator

Purpose Beamspace ESPRIT direction of arrival (DOA) estimator

Description The BeamspaceESPRITEstimator object computes a DOA estimate for
a uniform linear array. The computation uses the estimation of signal
parameters via rotational invariance techniques (ESPRIT) algorithm
in beamspace.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page
1-145.

2 Call step to estimate the DOA according to the properties of
phased.BeamspaceESPRITEstimator. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.BeamspaceESPRITEstimator creates a beamspace ESPRIT
DOA estimator System object, H. The object estimates the signal’s
direction of arrival using the beamspace ESPRIT algorithm with a
uniform linear array (ULA).

H = phased.BeamspaceESPRITEstimator(Name,Value) creates object,
H, with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

1-145

phased.BeamspaceESPRITEstimator

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to
estimate the covariance matrix as a nonnegative integer. Each
additional smoothing handles one extra coherent source, but
reduces the effective number of element by 1. The maximum
value of this property is M–2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto'
or 'Property'. If you set this property to 'Auto', the
number of signals is estimated by the method specified by the
NumSignalsMethod property.

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

1-146

phased.BeamspaceESPRITEstimator

Specify the method to estimate the number of signals as one of
'AIC' or 'MDL'. 'AIC' uses the Akaike Information Criterion and
'MDL' uses Minimum Description Length Criterion. This property
applies when you set the NumSignalsSource property to 'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This
property applies when you set the NumSignalsSource property
to 'Property'.

Default: 1

Method

Type of least square method

Specify the least squares method used for ESPRIT as one of 'TLS'
or 'LS'. 'TLS' refers to total least squares and 'LS' refers to
least squares.

Default: 'TLS'

BeamFanCenter

Beam fan center direction (in degrees)

Specify the direction of the center of the beam fan (in degrees) as
a real scalar value between –90 and 90. This property is tunable.

Default: 0

NumBeamsSource

Source of number of beams

1-147

phased.BeamspaceESPRITEstimator

Specify the source of the number of beams as one of 'Auto' or
'Property'. If you set this property to 'Auto', the number of
beams equals N–L, where N is the number of array elements and
L is the value of the SpatialSmoothing property.

Default: 'Auto'

NumBeams

Number of beams

Specify the number of beams as a positive scalar integer.
The lower the number of beams, the greater the reduction in
computational cost. This property applies when you set the
NumBeamsSource to 'Property'.

Default: 2

Methods clone Create beamspace ESPRIT DOA
estimator object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform DOA estimation

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in

1-148

phased.BeamspaceESPRITEstimator

azimuth and 20 degrees in elevation. The direction of the second signal
is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
% construct beamspace ESPRIT estimator
hdoa = phased.BeamspaceESPRITEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2);

% use the step method to obtain the direction of arrival estimates
doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60]);

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also broadside2az | phased.ESPRITEstimator

1-149

phased.BeamspaceESPRITEstimator.clone

Purpose Create beamspace ESPRIT DOA estimator object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-150

phased.BeamspaceESPRITEstimator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-151

phased.BeamspaceESPRITEstimator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-152

phased.BeamspaceESPRITEstimator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
BeamspaceESPRITEstimator System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-153

phased.BeamspaceESPRITEstimator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-154

phased.BeamspaceESPRITEstimator.step

Purpose Perform DOA estimation

Syntax ANG = step(H,X)

Description ANG = step(H,X) estimates the DOAs from X using the DOA estimator
H. X is a matrix whose columns correspond to channels. ANG is a row
vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
% construct beamspace ESPRIT estimator
hdoa = phased.BeamspaceESPRITEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2);

% use the step method to obtain the direction of arrival estimates

1-155

phased.BeamspaceESPRITEstimator.step

doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60]);

1-156

phased.CFARDetector

Purpose Constant false alarm rate (CFAR) detector

Description The CFARDetector object implements a constant false-alarm rate
detector.

To perform the detection:

1 Define and set up your CFAR detector. See “Construction” on page
1-157.

2 Call step to perform CFAR detection according to the properties of
phased.CFARDetector. The behavior of step is specific to each object
in the toolbox.

Construction H = phased.CFARDetector creates a constant false alarm rate (CFAR)
detector System object, H. The object performs CFAR detection on the
input data.

H = phased.CFARDetector(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties Method

CFAR algorithm

Specify the algorithm of the CFAR detector as a string. Values of
this property are:

'CA' Cell-averaging CFAR

'GOCA' Greatest-of cell-averaging CFAR

'OS' Order statistic CFAR

'SOCA' Smallest-of cell-averaging CFAR

Default: 'CA'

1-157

phased.CFARDetector

Rank

Rank of order statistic

Specify the rank of the order statistic as a positive integer
scalar. The value must be less than or equal to the value of the
NumTrainingCells property. This property applies only when you
set the Method property to 'OS'.

Default: 1

NumGuardCells

Number of guard cells

Specify the number of guard cells used in training as an even
integer. This property specifies the total number of cells on both
sides of the cell under test.

Default: 2, indicating that there is one guard cell at both the
front and back of the cell under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in training as an even
integer. Whenever possible, the training cells are equally divided
before and after the cell under test.

Default: 2, indicating that there is one training cell at both the
front and back of the cell under test

ThresholdFactor

Methods of obtaining threshold factor

Specify whether the threshold factor comes from an automatic
calculation, the CustomThresholdFactor property of this object,
or an input argument in step. Values of this property are:

1-158

phased.CFARDetector

'Auto' The application calculates the
threshold factor automatically
based on the desired probability
of false alarm specified in the
ProbabilityFalseAlarm property.
The calculation assumes each
independent signal in the input is a
single pulse coming out of a square
law detector with no pulse integration.
The calculation also assumes the noise
is white Gaussian.

'Custom' The CustomThresholdFactor
property of this object specifies the
threshold factor.

'Input port' An input argument in each invocation
of step specifies the threshold factor.

Default: 'Auto'

ProbabilityFalseAlarm

Desired probability of false alarm

Specify the desired probability of false alarm as a scalar between
0 and 1 (not inclusive). This property applies only when you set
the ThresholdFactor property to 'Auto'.

Default: 0.1

CustomThresholdFactor

Custom threshold factor

Specify the custom threshold factor as a positive scalar. This
property applies only when you set the ThresholdFactor property
to 'Custom'. This property is tunable.

1-159

phased.CFARDetector

Default: 1

ThresholdOutputPort

Output detection threshold

To obtain the detection threshold, set this property to true and
use the corresponding output argument when invoking step.
If you do not want to obtain the detection threshold, set this
property to false.

Default: false

Methods clone Create CFAR detector object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform CFAR detection

Examples Perform cell-averaging CFAR detection on a given Gaussian noise vector
with a desired probability of false alarm of 0.1. Assume that the data is
from a square law detector and no pulse integration is performed. Use
50 cells to estimate the noise level and 1 cell to separate the test cell
and training cells. Perform the detection on all cells of input.

rng(5);
hdet = phased.CFARDetector('NumTrainingCells',50,...

'NumGuardCells',2,'ProbabilityFalseAlarm',0.1);

1-160

phased.CFARDetector

N = 1000; x = 1/sqrt(2)*(randn(N,1)+1i*randn(N,1));
dresult = step(hdet,abs(x).^2,1:N);
Pfa = sum(dresult)/N;

Algorithms phased.CFARDetector uses cell averaging in three steps:

1 Identify the training cells from the input, and form the noise
estimate. The next table indicates how the detector forms the noise
estimate, depending on the Method property value.

Method Noise Estimate

'CA' Use the average of the values in all the training
cells.

'GOCA' Select the greater of the averages in the front
training cells and rear training cells.

'OS' Sort the values in the training cells in ascending
order. Select the Nth item, where N is the value
of the Rank property.

'SOCA' Select the smaller of the averages in the front
training cells and rear training cells.

2 Multiply the noise estimate by the threshold factor to form the
threshold.

3 Compare the value in the test cell against the threshold to determine
whether the target is present or absent. If the value is greater than
the threshold, the target is present.

For further details, see [1].

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also npwgnthresh | phased.MatchedFilter | phased.TimeVaryingGain

1-161

phased.CFARDetector.clone

Purpose Create CFAR detector object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-162

phased.CFARDetector.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-163

phased.CFARDetector.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-164

phased.CFARDetector.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the CFARDetector
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-165

phased.CFARDetector.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-166

phased.CFARDetector.step

Purpose Perform CFAR detection

Syntax Y = step(H,X,CUTIDX)
Y = step(H,X,CUTIDX,THFAC)
[Y,TH] = step(___)

Description Y = step(H,X,CUTIDX) performs the CFAR detection on the real input
data X. X can be either a column vector or a matrix. Each row of X is a
cell and each column of X is independent data. Detection is performed
along each column for the cells specified in CUTIDX. CUTIDX must be
a vector of positive integers with each entry specifying the index of a
cell under test (CUT). Y is an M-by-N matrix containing the logical
detection result for the cells in X. M is the number of indices specified in
CUTIDX, and N is the number of independent signals in X.

Y = step(H,X,CUTIDX,THFAC) uses THFAC as the threshold factor used
to calculate the detection threshold. This syntax is available when you
set the ThresholdFactor property to 'Input port'. THFAC must be a
positive scalar.

[Y,TH] = step(___) returns additional output, TH, as the detection
threshold for each cell under test in X. This syntax is available when
you set the ThresholdOutputPort property to true. TH has the same
dimensionality as Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Perform cell-averaging CFAR detection on a given Gaussian noise vector
with a desired probability of false alarm of 0.1. Assume that the data is

1-167

phased.CFARDetector.step

from a square law detector and no pulse integration is performed. Use
50 cells to estimate the noise level and 1 cell to separate the test cell
and training cells. Perform the detection on all cells of input.

rng(5);
hdet = phased.CFARDetector('NumTrainingCells',50,...

'NumGuardCells',2,'ProbabilityFalseAlarm',0.1);
N = 1000; x = 1/sqrt(2)*(randn(N,1)+1i*randn(N,1));
dresult = step(hdet,abs(x).^2,1:N);
Pfa = sum(dresult)/N;

Algorithms phased.CFARDetector uses cell averaging in three steps:

1 Identify the training cells from the input, and form the noise
estimate. The next table indicates how the detector forms the noise
estimate, depending on the Method property value.

Method Noise Estimate

'CA' Use the average of the values in all the training
cells.

'GOCA' Select the greater of the averages in the front
training cells and rear training cells.

'OS' Sort the values in the training cells in ascending
order. Select the Nth item, where N is the value
of the Rank property.

'SOCA' Select the smaller of the averages in the front
training cells and rear training cells.

2 Multiply the noise estimate by the threshold factor to form the
threshold.

3 Compare the value in the test cell against the threshold to determine
whether the target is present or absent. If the value is greater than
the threshold, the target is present.

1-168

phased.CFARDetector.step

For details, see [1].

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

1-169

phased.Collector

Purpose Narrowband signal collector

Description The Collector object implements a narrowband signal collector.

To compute the collected signal at the sensor(s):

1 Define and set up your signal collector. See “Construction” on page
1-170.

2 Call step to collect the signal according to the properties of
phased.Collector. The behavior of step is specific to each object
in the toolbox.

Construction H = phased.Collector creates a narrowband signal collector System
object, H. The object collects incident narrowband signals from given
directions using a sensor array or a single element.

H = phased.Collector(Name,Value) creates a collector object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties Sensor

Sensor element or sensor array

Sensor element or sensor array specified as a System object in
the Phased Array System Toolbox™. A sensor array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-170

phased.Collector

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

WeightsInputPort

Enable weights input

To specify weights, set this property to true and use the
corresponding input argument when you invoke step. If you do
not want to specify weights, set this property to false.

Default: false

EnablePolarization

EnablePolarization

Set this property to true to simulate the collection of polarized
waves. Set this property to false to ignore polarization. This
property applies when the sensor specified in the Sensor property
is capable of simulating polarization.

Default: false

Wavefront

Type of incoming wavefront

Specify the type of incoming wavefront as one of 'Plane', or
'Unspecified':

• If you set the Wavefront property to 'Plane', the input signals
are multiple plane waves impinging on the entire array. Each

1-171

phased.Collector

plane wave is received by all collecting elements. If the Sensor
property is an array that contains subarrays, the Wavefront
property must be 'Plane'.

• If you set the Wavefront property to 'Unspecified', the input
signals are individual waves impinging on individual sensors.

Default: 'Plane'

Methods clone Create collector object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Collect signals

Examples Collect signal with a single antenna.

ha = phased.IsotropicAntennaElement;
hc = phased.Collector('Sensor',ha,'OperatingFrequency',1e9);
x = [1;1];
incidentAngle = [10 30]';
y = step(hc,x,incidentAngle);

Collect a far field signal with a 5-element array.

ha = phased.ULA('NumElements',5);
hc = phased.Collector('Sensor',ha,'OperatingFrequency',1e9);

1-172

phased.Collector

x = [1;1];
incidentAngle = [10 30]';
y = step(hc,x,incidentAngle);

Collect signals with a 3-element array. Each antenna collects a separate
input signal from a separate direction.

ha = phased.ULA('NumElements',3);
hc = phased.Collector('Sensor',ha,'OperatingFrequency',1e9,...

'Wavefront','Unspecified');
x = rand(10,3); % Each column is a separate signal for one element
incidentAngle = [10 0; 20 5; 45 2]'; % 3 angles for 3 signals
y = step(hc,x,incidentAngle);

Algorithms If the Wavefront property value is 'Plane', phased.Collector
collects each plane wave signal using the phase approximation of the
time delays across collecting elements in the far field.

If the Wavefront property value is 'Unspecified', phased.Collector
collects each channel independently.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.WidebandCollector

1-173

phased.Collector.clone

Purpose Create collector object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-174

phased.Collector.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-175

phased.Collector.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-176

phased.Collector.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the Collector
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-177

phased.Collector.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-178

phased.Collector.step

Purpose Collect signals

Syntax Y = step(H,X,ANG)
Y = step(H,X,ANG,LAXES)
Y = step(H,X,ANG,WEIGHTS)
Y = step(H,X,ANG,STEERANGLE)
Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE)

Description Y = step(H,X,ANG) collects signals X arriving from directions ANG. The
collection process depends on the Wavefront property of H, as follows:

• If Wavefront has the value 'Plane', each collecting element collects
all the far field signals in X. Each column of Y contains the output of
the corresponding element in response to all the signals in X.

• If Wavefront has the value 'Unspecified', each collecting element
collects only one impinging signal from X. Each column of Y
contains the output of the corresponding element in response to the
corresponding column of X. The 'Unspecified' option is available
when the Sensor property of H does not contain subarrays.

Y = step(H,X,ANG,LAXES) uses LAXES as the local coordinate
system axes directions. This syntax is available when you set the
EnablePolarization property to true.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This
syntax is available when you set the WeightsInputPort property to
true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray
steering angle. This syntax is available when you configure
H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE) combines all input
arguments. This syntax is available when you configure H so that
H.WeightsInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
'Time'.

1-179

phased.Collector.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Collector object.

X

Arriving signals. Each column of X represents a separate signal.
The specific interpretation of X depends on the Wavefront
property of H.

Wavefront
Property
Value

Description

'Plane' Each column of X is a far field signal.

'Unspecified' Each column of X is the signal impinging
on the corresponding element. In this case,
the number of columns in X must equal the
number of collecting elements in the Sensor
property.

• If the EnablePolarization property value is set to false, X
is a matrix. The number of columns of the matrix equals the
number of separate signals.

• If the EnablePolarization property value is set to true, X is
a row vector of MATLAB struct type. The dimension of the
struct array equals the number of separate signals. Each

1-180

phased.Collector.step

structmember contains three column-vector fields, X, Y, and Z,
representing the x, y, and z components of the polarized wave
vector signals in the global coordinate system.

ANG

Incident directions of signals, specified as a two-row matrix.
Each column specifies the incident direction of the corresponding
column of X. Each column of ANG has the form [azimuth;
elevation], in degrees. The azimuth angle must be between –180
and 180 degrees, inclusive. The elevation angle must be between
–90 and 90 degrees, inclusive.

LAXES

Local coordinate system. LAXES is a 3-by-3 matrix whose columns
specify the local coordinate system’s orthonormal x, y, and z axes,
respectively. Each axis is specified in terms of [x;y;z] with
respect to the global coordinate system. This argument is only
used when the EnablePolarization property is set to true.

WEIGHTS

Vector of weights. WEIGHTS is a column vector of length M, where
M is the number of collecting elements.

Default: ones(M,1)

STEERANGLE

Subarray steering angle, specified as a length-2 column vector.
The vector has the form [azimuth; elevation], in degrees. The
azimuth angle must be between –180 and 180 degrees, inclusive.
The elevation angle must be between –90 and 90 degrees,
inclusive.

Output
Arguments

Y

Collected signals. Each column of Y contains the output of the
corresponding element. The output is the response to all the

1-181

phased.Collector.step

signals in X, or one signal in X, depending on the Wavefront
property of H.

Examples Construct a 4-element uniform linear array. The array operating
frequency is 1 GHz. The array element spacing is half the operating
frequency wavelength. Model the collection of a 200-Hz sine wave
incident on the array from 45 degrees azimuth, 10 degrees elevation
from the far field.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
hULA = phased.ULA('NumElements',4,'ElementSpacing',lambda/2);
t = linspace(0,1,1e3);
x = cos(2*pi*200*t)';
% construct the collector object.
hc = phased.Collector('Sensor',hULA,...

'PropagationSpeed',physconst('LightSpeed'),...
'Wavefront','Plane','OperatingFrequency',fc);

% incident angle is 45 degrees azimuth, 10 degrees elevation
incidentangle = [45;10];
% collect the incident waveform at the ULA
receivedsig = step(hc,x,incidentangle);

Algorithms If the Wavefront property value is 'Plane', phased.Collector
collects each plane wave signal using the phase approximation of the
time delays across collecting elements in the far field.

If the Wavefront property value is 'Unspecified', phased.Collector
collects each channel independently.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | phitheta2azel

1-182

phased.ConformalArray

Purpose Conformal array

Description The ConformalArray object constructs a conformal array. A conformal
array can have elements in any position pointing in any direction.

To compute the response for each element in the array for specified
directions:

1 Define and set up your conformal array. See “Construction” on page
1-183.

2 Call step to compute the response according to the properties of
phased.ConformalArray. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.ConformalArray creates a conformal array System object,
H. The object models a conformal array formed with identical sensor
elements.

H = phased.ConformalArray(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.ConformalArray(POS,NV,Name,Value) creates a
conformal array object, H, with the ElementPosition property set
to POS, the ElementNormal property set to NV, and other specified
property Names set to the specified Values. POS and NV are value-only
arguments. To specify a value-only argument, you must also specify
all preceding value-only arguments. You can specify name-value
arguments in any order.

Properties Element

Element of array

Specify the element of the sensor array as a handle. The element
must be an element object in the phased package.

1-183

phased.ConformalArray

Default: An isotropic antenna element that operates between
300 MHz and 1 GHz

ElementPosition

Element positions

ElementPosition specifies the positions of the elements in the
conformal array. ElementPosition must be a 3-by-N matrix,
where N indicates the number of elements in the conformal array.
Each column of ElementPosition represents the position, in the
form [x; y; z] (in meters), of a single element in the array’s local
coordinate system. The local coordinate system has its origin at
an arbitrary point. The default value of this property represents a
single element at the origin of the local coordinate system.

Default: [0; 0; 0]

ElementNormal

Element normal directions

ElementNormal specifies the normal directions of the elements
in the conformal array. Angle units are degrees. The value
assigned to ElementNormal must be either a 2-by-N matrix or a
2-by-1 column vector. The variable N indicates the number of
elements in the array. If the value of ElementNormal is a matrix,
each column specifies the normal direction of the corresponding
element in the form [azimuth;elevation] with respect to the
local coordinate system. The local coordinate system aligns the
positive x-axis with the direction normal to the conformal array. If
the value of ElementNormal is a 2-by-1 column vector, it specifies
the same pointing direction for all elements in the array.

You can use the ElementPosition and ElementNormal
properties to represent any arrangement in which pairs of
elements differ by certain transformations. The transformations
can combine translation, azimuth rotation, and elevation rotation.

1-184

phased.ConformalArray

However, you cannot use transformations that require rotation
about the normal.

Default: [0; 0]

Taper

Element taper or weighting

Element taper or weighting specified as a complex scalar or 1-by-N
complex-valued vector. Weights are applied to each element in
the sensor array. N is the number of elements along in the array
as determined by the size of the ElementPosition property. If
the Taper parameter is a scalar, identical weights will be applied
to each element. If the value of Taper is a vector, each weight will
be applied to the corresponding element.

Default: 1

Methods clone Create conformal array object
with same property values

collectPlaneWave Simulate received plane waves

getElementPosition Positions of array elements

getNumElements Number of elements in array

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

getTaper Array element tapers

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

1-185

phased.ConformalArray

plotResponse Plot response pattern of array

release Allow property value and input
characteristics changes

step Output responses of array
elements

viewArray View array geometry

Examples Plot Response of 8-Element Uniform Circular Array

Construct an 8-element uniform circular array (UCA) and plot its
azimuth responses. Assume the operating frequency is 1 GHz and the
wave propagation speed is 3e8 m/s.

N = 8;
azang = (0:N-1)*360/N-180;
ha = phased.ConformalArray(...

'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal',[azang;zeros(1,N)]);

fc = 1e9;
c = 3e8;
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');

1-186

phased.ConformalArray

Plot Response of 31-Element Uniform Circular Sonar Array

Construct a 31-element uniform circular sonar array (UCA), one meter
in diameter. Using the ElevationAngles parameter, restrict the
display to +/-40 degrees in 0.1 degree increments. Assume the operating
frequency is 4 kHz. A typical value for the speed of sound in seawater is
1500.0 m/s.

N = 31;
theta = (0:N-1)*360/N-180;

1-187

phased.ConformalArray

Radius = 0.5;
s_mic = phased.OmnidirectionalMicrophoneElement(...

'FrequencyRange',[0,10000],'BackBaffled',true);
s_array = phased.ConformalArray('Element',s_mic,...

'ElementPosition',Radius*[zeros(1,N);cosd(theta);sind(theta)],...
'ElementNormal',[ones(1,N);zeros(1,N)]);

fc = 4000;
c = 1500.0;
plotResponse(s_array,fc,c,'RespCut','El',...

'Format','Polar','Unit','mag',...
'ElevationAngles',[-40:0.1:40]);

1-188

phased.ConformalArray

Plot the directivity.

plotResponse(s_array,fc,c,'RespCut','El',...
'Format','Polar','Unit','dbi',...
'ElevationAngles',[-40:0.1:40]);

1-189

phased.ConformalArray

References [1] Josefsson, L. and P. Persson. Conformal Array Antenna Theory and
Design. Piscataway, NJ: IEEE Press, 2006.

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ReplicatedSubarray | phased.PartitionedArray |
phased.CosineAntennaElement | phased.CustomAntennaElement

1-190

phased.ConformalArray

| phased.IsotropicAntennaElement | phased.ULA | phased.URA |
uv2azel | phitheta2azel

Related
Examples

• Phased Array Gallery

1-191

../examples/phased-array-gallery.html

phased.ConformalArray.clone

Purpose Create conformal array object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-192

phased.ConformalArray.collectPlaneWave

Purpose Simulate received plane waves

Syntax Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description Y = collectPlaneWave(H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave(H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

Input
Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

1-193

phased.ConformalArray.collectPlaneWave

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output
Arguments

Y

Received signals. Y is an N-column matrix, where N is the number
of elements in the array H. Each column of Y is the received signal
at the corresponding array element, with all incoming signals
combined.

Examples Simulate the received signal at an 8-element uniform circular array.

The signals arrive from 10 degrees and 30 degrees azimuth. Both
signals have an elevation angle of 0 degrees. Assume the propagation
speed is the speed of light and the carrier frequency of the signal is
100 MHz.

N = 8; azang = (0:N-1)*360/N-180;
hArray = phased.ConformalArray(...

'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal',[azang;zeros(1,N)]);

y = collectPlaneWave(hArray,randn(4,2),[10 30],1e8);

Algorithms collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. The
method does not account for the response of individual elements in
the array.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

1-194

phased.ConformalArray.collectPlaneWave

See Also uv2azel | phitheta2azel

1-195

phased.ConformalArray.getElementPosition

Purpose Positions of array elements

Syntax POS = getElementPosition(H)
POS = getElementPosition(H,ELEIDX)

Description POS = getElementPosition(H) returns the element positions of the
conformal array H. POS is an 3xN matrix where N is the number of
elements in H. Each column of POS defines the position of an element in
the local coordinate system, in meters, using the form [x; y; z].

For details regarding the local coordinate system of the conformal array,
enter phased.ConformalArray.coordinateSystemInfo.

POS = getElementPosition(H,ELEIDX) returns the positions of the
elements that are specified in the element index vector ELEIDX.

Examples Construct a default conformal array and obtain the element positions.

ha = phased.ConformalArray;
pos = getElementPosition(ha)

1-196

phased.ConformalArray.getNumElements

Purpose Number of elements in array

Syntax N = getNumElements(H)

Description N = getNumElements(H) returns the number of elements, N, in the
conformal array object H.

Examples Construct a default conformal array and obtain the number of elements.

ha = phased.ConformalArray;
N = getNumElements(ha)

1-197

phased.ConformalArray.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-198

phased.ConformalArray.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-199

phased.ConformalArray.getTaper

Purpose Array element tapers

Syntax wts = getTaper(h)

Description wts = getTaper(h) returns the tapers applied to each element of a
conformal array, h. Tapers are often referred to as weights.

Input
Arguments

h - Conformal array
phased.ConformalArray System object

Conformal array specified as a phased.ConformalArray System
object.

Output
Arguments

wts - Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued
vector, where N is the number of elements in the array.

Examples Create and View a Tapered Array

Create a two-ring tapered disk array

Create a two-ring disk array and set the taper values on the outer ring
to be smaller than those on the inner ring.

elemAngles = ([0:5]*360/6);
elemPosInner = 0.5*[zeros(size(elemAngles));...

cosd(elemAngles);...
sind(elemAngles)];

elemPosOuter = [zeros(size(elemAngles));...
cosd(elemAngles);...
sind(elemAngles)];

elemNorms = repmat([0;0],1,12);
taper = [ones(size(elemAngles)),0.3*ones(size(elemAngles))];
ha = phased.ConformalArray(...

[elemPosInner,elemPosOuter],elemNorms,'Taper',taper);

1-200

phased.ConformalArray.getTaper

Display the taper values

w = getTaper(ha)

w =

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.3000
0.3000
0.3000
0.3000
0.3000
0.3000

View the array

viewArray(ha,'ShowTaper',true,'ShowIndex','all');

1-201

phased.ConformalArray.getTaper

1-202

phased.ConformalArray.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ConformalArray System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-203

phased.ConformalArray.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the array supports polarization. An array supports
polarization if all of its constituent sensor elements support polarization.

Input
Arguments

h - Conformal array

Conformal array specified as a phased.ConformalArray System
object.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability returned as a Boolean value true if the
array supports polarization or false if it does not.

Examples Conformal Array of Short-dipole Antenna Elements Supports
Polarization

Show that a circular conformal array of
phased.ShortDipoleAntennaElement antenna elements supports
polarization.

N = 8; azang = (0:N-1)*360/N-180;
h = phased.ShortDipoleAntennaElement;
ha = phased.ConformalArray(...

'Element',h,'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],..
'ElementNormal',[azang;zeros(1,N)]);

isPolarizationCapable(ha)

ans =

1

1-204

phased.ConformalArray.isPolarizationCapable

The returned value true (1) shows that this array supports
polarization.

1-205

phased.ConformalArray.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row
vector. Values must lie within the range specified by a property of
H. That property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has
no response at frequencies outside that range. If you set the
'RespCut' property of H to '3D', FREQ must be a scalar. When
FREQ is a row vector, plotResponse draws multiple frequency
responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding

1-206

phased.ConformalArray.plotResponse

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must
be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

1-207

phased.ConformalArray.plotResponse

Default: true

’Polarization’

Specify the polarization options for plotting the array response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

1-208

phased.ConformalArray.plotResponse

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’Weights’

Weight values applied to the array, specified as a length-N
column vector or N-by-M matrix. The dimension N is the number
of elements in the array. The interpretation of M depends upon
whether the input argument FREQ is a scalar or row vector.

Weights
Dimensions

FREQ Dimension Purpose

N-by-1 column
vector

Scalar or 1-by-M
row vector

Apply one set
of weights for
the same single
frequency or all M
frequencies.

Scalar Apply all of the M
different columns
in Weights for
the same single
frequency.

N-by-M matrix
1-by-M row vector Apply each of theM

different columns
in Weights for
the corresponding
frequency in FREQ.

’AzimuthAngles’

1-209

phased.ConformalArray.plotResponse

Azimuth angles for plotting array response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting array response, specified as a row
vector. The ElevationAngles parameter sets the display range
and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When yous set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

Default: [-90:90]

’UGrid’

U coordinate values for plotting array response, specified as a
row vector. The UGrid parameter sets the display range and
resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

1-210

phased.ConformalArray.plotResponse

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting array response, specified as a
row vector. The VGrid parameter sets the display range and
resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set VGrid and
UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples Plot Response of 8-Element Uniform Circular Array

Construct an 8-element uniform circular array (UCA) and plot its
azimuth responses. Assume the operating frequency is 1 GHz and the
wave propagation speed is 3e8 m/s.

N = 8;
azang = (0:N-1)*360/N-180;
ha = phased.ConformalArray(...

'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal',[azang;zeros(1,N)]);

fc = 1e9;
c = 3e8;
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');

1-211

phased.ConformalArray.plotResponse

Plot Response of 31-Element Uniform Circular Sonar Array

Construct a 31-element uniform circular sonar array (UCA), one meter
in diameter. Using the ElevationAngles parameter, restrict the
display to +/-40 degrees in 0.1 degree increments. Assume the operating
frequency is 4 kHz. A typical value for the speed of sound in seawater is
1500.0 m/s.

N = 31;
theta = (0:N-1)*360/N-180;

1-212

phased.ConformalArray.plotResponse

Radius = 0.5;
s_mic = phased.OmnidirectionalMicrophoneElement(...

'FrequencyRange',[0,10000],'BackBaffled',true);
s_array = phased.ConformalArray('Element',s_mic,...

'ElementPosition',Radius*[zeros(1,N);cosd(theta);sind(theta)],...
'ElementNormal',[ones(1,N);zeros(1,N)]);

fc = 4000;
c = 1500.0;
plotResponse(s_array,fc,c,'RespCut','El',...

'Format','Polar','Unit','mag',...
'ElevationAngles',[-40:0.1:40]);

1-213

phased.ConformalArray.plotResponse

Plot the directivity.

plotResponse(s_array,fc,c,'RespCut','El',...
'Format','Polar','Unit','dbi',...
'ElevationAngles',[-40:0.1:40]);

1-214

phased.ConformalArray.plotResponse

See Also uv2azel | azel2uv

1-215

phased.ConformalArray.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-216

phased.ConformalArray.step

Purpose Output responses of array elements

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP
at operating frequencies specified in FREQ and directions specified in
ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Array object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector
of length L. Typical values are within the range specified by a
property of H.Element. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the
array. The element has zero response at frequencies outside that
range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle

1-217

phased.ConformalArray.step

must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

Output
Arguments

RESP

Voltage responses of the phased array. The output depends on
whether the array supports polarization or not.

• If the array is not capable of supporting polarization, the
voltage response, RESP, has the dimensions N-by-M-by-L. N
is the number of elements in the array. The dimension M is
the number of angles specified in ANG. L is the number of
frequencies specified in FREQ. For any element, the columns
of RESP contain the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage
response, RESP, is a MATLAB struct containing two fields,
RESP.H and RESP.V. The field, RESP.H, represents the array’s
horizontal polarization response, while RESP.V represents
the array’s vertical polarization response. Each field has the
dimensions N-by-M-by-L. N is the number of elements in the
array, and M is the number of angles specified in ANG. L is
the number of frequencies specified in FREQ. Each column of
RESP contains the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

Examples Construct an 8-element uniform circular array (UCA). Assume the
operating frequency is 1 GHz. Find the response of each element in this
array in the direction of 30 degrees azimuth and 5 degrees elevation.

1-218

phased.ConformalArray.step

ha = phased.ConformalArray;
N = 8; azang = (0:N-1)*360/N-180;
ha.ElementPosition = [cosd(azang);sind(azang);zeros(1,N)];
ha.ElementNormal = [azang;zeros(1,N)];
fc = 1e9; ang = [30;5];
resp = step(ha,fc,ang);

resp =

1
1
1
1
1
1
1
1

See Also uv2azel | phitheta2azel

1-219

phased.ConformalArray.viewArray

Purpose View array geometry

Syntax viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray(___)

Description viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(___) returns the handle of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

Input
Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’ShowIndex’

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

’ShowNormals’

1-220

phased.ConformalArray.viewArray

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

’ShowTaper’

Set this value to true to specify whether to change the element
color brightness in proportion to the element taper magnitude.
When this value is set to false, all elements are drawn with the
same color.

Default: false

’Title’

String specifying the title of the plot.

Default: 'Array Geometry'

Output
Arguments

hPlot

Handle of array elements in figure window.

Examples View Uniform Circular Array

Display the element positions and normal directions of all elements of
an 8-element uniform circular array.

Create the uniform circular array

N = 8;
azang = (0:N-1)*360/N - 180;
ha = phased.ConformalArray(...

'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal',[azang;zeros(1,N)]);

Display the positions and normal directions of the elements

1-221

phased.ConformalArray.viewArray

viewArray(ha,'ShowNormals',true);

See Also phased.ArrayResponse

Related
Examples

• Phased Array Gallery

1-222

../examples/phased-array-gallery.html

phased.ConstantGammaClutter

Purpose Constant gamma clutter simulation

Description The ConstantGammaClutter object simulates clutter.

To compute the clutter return:

1 Define and set up your clutter simulator. See “Construction” on
page 1-223.

2 Call step to simulate the clutter return for your system according to
the properties of phased.ConstantGammaClutter. The behavior of
step is specific to each object in the toolbox.

The clutter simulation that ConstantGammaClutter provides is based
on these assumptions:

• The radar system is monostatic.

• The propagation is in free space.

• The terrain is homogeneous.

• The clutter patch is stationary during the coherence time. Coherence
time indicates how frequently the software changes the set of random
numbers in the clutter simulation.

• The signal is narrowband. Thus, the spatial response can be
approximated by a phase shift. Similarly, the Doppler shift can be
approximated by a phase shift.

• The radar system maintains a constant height during simulation.

• The radar system maintains a constant speed during simulation.

Construction H = phased.ConstantGammaClutter creates a constant gamma clutter
simulation System object, H. This object simulates the clutter return of
a monostatic radar system using the constant gamma model.

H = phased.ConstantGammaClutter(Name,Value) creates a constant
gamma clutter simulation object, H, with additional options specified
by one or more Name,Value pair arguments. Name is a property name,

1-223

phased.ConstantGammaClutter

and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any
order as Name1,Value1, ,NameN,ValueN.

Properties Sensor

Handle of sensor

Specify the sensor as an antenna element object or as an array
object whose Element property value is an antenna element
object. If the sensor is an array, it can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default
value corresponds to 1 MHz.

Default: 1e6

1-224

phased.ConstantGammaClutter

PRF

Pulse repetition frequency

Specify the pulse repetition frequency in hertz as a positive scalar
or a row vector. The default value of this property corresponds to
10 kHz. When PRF is a vector, it represents a staggered PRF. In
this case, the output pulses use elements in the vector as their
PRFs, one after another, in a cycle.

Default: 1e4

Gamma

Terrain gamma value

Specify the  value used in the constant  clutter model, as a
scalar in decibels. The  value depends on both terrain type and
the operating frequency.

Default: 0

EarthModel

Earth model

Specify the earth model used in clutter simulation as one of |
'Flat' | 'Curved' |. When you set this property to 'Flat', the
earth is assumed to be a flat plane. When you set this property to
'Curved', the earth is assumed to be a sphere.

Default: 'Flat'

PlatformHeight

Radar platform height from surface

Specify the radar platform height (in meters) measured upward
from the surface as a nonnegative scalar.

Default: 300

1-225

phased.ConstantGammaClutter

PlatformSpeed

Radar platform speed

Specify the radar platform’s speed as a nonnegative scalar in
meters per second.

Default: 300

PlatformDirection

Direction of radar platform motion

Specify the direction of radar platform motion as a 2-by-1 vector
in the form [AzimuthAngle; ElevationAngle] in degrees. The
default value of this property indicates that the platform moves
perpendicular to the radar antenna array’s broadside.

Both azimuth and elevation angle are measured in the local
coordinate system of the radar antenna or antenna array.
Azimuth angle must be between –180 and 180 degrees. Elevation
angle must be between –90 and 90 degrees.

Default: [90;0]

BroadsideDepressionAngle

Depression angle of array broadside

Specify the depression angle in degrees of the broadside of the
radar antenna array. This value is a scalar. The broadside is
defined as zero degrees azimuth and zero degrees elevation. The
depression angle is measured downward from horizontal.

Default: 0

MaximumRange

Maximum range for clutter simulation

1-226

phased.ConstantGammaClutter

Specify the maximum range in meters for the clutter simulation
as a positive scalar. The maximum range must be greater than
the value specified in the PlatformHeight property.

Default: 5000

AzimuthCoverage

Azimuth coverage for clutter simulation

Specify the azimuth coverage in degrees as a positive scalar. The
clutter simulation covers a region having the specified azimuth
span, symmetric to 0 degrees azimuth. Typically, all clutter
patches have their azimuth centers within the region, but the
PatchAzimuthWidth value can cause some patches to extend
beyond the region.

Default: 60

PatchAzimuthWidth

Azimuth span of each clutter patch

Specify the azimuth span of each clutter patch in degrees as a
positive scalar.

Default: 1

TransmitSignalInputPort

Add input to specify transmit signal

Set this property to true to add input to specify the transmit
signal in the step syntax. Set this property to false omit the
transmit signal in the step syntax. The false option is less
computationally expensive; to use this option, you must also
specify the TransmitERP property.

Default: false

1-227

phased.ConstantGammaClutter

TransmitERP

Effective transmitted power

Specify the transmitted effective radiated power (ERP) of the
radar system in watts as a positive scalar. This property applies
only when you set the TransmitSignalInputPort property to
false.

Default: 5000

CoherenceTime

Clutter coherence time

Specify the coherence time in seconds for the clutter simulation
as a positive scalar. After the coherence time elapses, the step
method updates the random numbers it uses for the clutter
simulation at the next pulse. A value of inf means the random
numbers are never updated.

Default: inf

OutputFormat

Output signal format

Specify the format of the output signal as one of | 'Pulses'
| 'Samples' |. When you set the OutputFormat property to
'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the
NumPulses property.

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property. In staggered PRF applications, you might find the
'Samples' option more convenient because the step output
always has the same matrix size.

1-228

phased.ConstantGammaClutter

Default: 'Pulses'

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as
a positive integer. This property applies only when you set the
OutputFormat property to 'Pulses'.

Default: 1

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method
as a positive integer. Typically, you use the number of samples
in one pulse. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this
property are:

1-229

phased.ConstantGammaClutter

'Auto' The default MATLAB random number
generator produces the random numbers.
Use 'Auto' if you are using this object
with Parallel Computing Toolbox software.

'Property' The object uses its own private random
number generator to produce random
numbers. The Seed property of this object
specifies the seed of the random number
generator. Use 'Property' if you want
repeatable results and are not using this
object with Parallel Computing Toolbox
software.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232–1. This property applies when you set
the SeedSource property to 'Property'.

Default: 0

Methods clone Create constant gamma clutter
simulation object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

1-230

phased.ConstantGammaClutter

release Allow property value and input
characteristics changes

reset Reset random numbers and time
count for clutter simulation

step Simulate clutter using constant
gamma model

Examples Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB.
The effective transmitted power of the radar system is 5 kW.

Set up radar system

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8;
fc = 3e8;
lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1e6;
prf = 10e3;
height = 1000;
direction = [90;0];
speed = 2000;
depang = 30;

Create clutter simulation object

1-231

phased.ConstantGammaClutter

Create the clutter simulation object. The configuration assumes the
earth is flat. The maximum clutter range of interest is 5 km, and the
maximum azimuth coverage is +/-60 degrees.

Rmax = 5000;
Azcov = 120;
tergamma = 0;
tpower = 5000;
hclutter = phased.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitERP',tpower,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov,'SeedSource','Property',...
'Seed',40547);

Simulate clutter return

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf;
Npulse = 10;
csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter);
end

Plot angle-Doppler response

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

1-232

phased.ConstantGammaClutter

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB.
The step syntax includes the transmit signal of the radar system as an
input argument. In this case, you do not record the effective transmitted
power of the signal in a property.

Set up radar system

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and

1-233

phased.ConstantGammaClutter

the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8;
fc = 3e8;
lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1e6;
prf = 10e3;
height = 1000;
direction = [90;0];
speed = 2000;
depang = 30;

Create clutter simulation object

Create the clutter simulation object and configure it to take a transmit
signal as an input argument to step. The configuration assumes the
earth is flat. The maximum clutter range of interest is 5 km, and the
maximum azimuth coverage is +/-60 degrees.

Rmax = 5000;
Azcov = 120;
tergamma = 0;
hclutter = phased.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitSignalInputPort',true,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov,'SeedSource','Property',...
'Seed',40547);

Simulate clutter return

1-234

phased.ConstantGammaClutter

Simulate the clutter return for 10 pulses. At each step, pass the
transmit signal as an input argument. The software automatically
computes the effective transmitted power of the signal. The transmit
signal is a rectangular waveform with a pulse width of 2 microseconds.

tpower = 5000;
pw = 2e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf;
Npulse = 10;
csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter,X);
end

Plot angle-Doppler response

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

1-235

phased.ConstantGammaClutter

Extended
Capabilities

Parallel Computing

You can use this System object to perform Monte Carlo simulations
with Parallel Computing Toolbox constructs, such as parfor. In this
situation, set the SeedSource property to 'Auto' to ensure correct,
automatic handling of random number streams on the workers.

Do not use this System object in a parallel construct whose iterations
represent data from consecutive pulses. Because such iterations are
not independent of each other, they must run sequentially. For more

1-236

phased.ConstantGammaClutter

information about parallel computing constructs, see “Deciding When to
Use parfor” or “Programming Considerations”.

To perform computations on a GPU instead of a CPU,
use phased.gpu.ConstantGammaClutter instead of
phased.ConstantGammaClutter.

References [1] Barton, David. “Land Clutter Models for Radar Design and
Analysis,” Proceedings of the IEEE. Vol. 73, Number 2, February, 1985,
pp. 198–204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar
Design Principles, 2nd Ed. Mendham, NJ: SciTech Publishing, 1999.

[4] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also phased.BarrageJammer | phased.gpu.ConstantGammaClutter |
surfacegamma | uv2azel | phitheta2azel

Related
Examples

• Ground Clutter Mitigation with Moving Target Indication (MTI)
Radar
• “Example: DPCA Pulse Canceller for Clutter Rejection”

Concepts • “Clutter Modeling”

1-237

../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

phased.ConstantGammaClutter.clone

Purpose Create constant gamma clutter simulation object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-238

phased.ConstantGammaClutter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-239

phased.ConstantGammaClutter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-240

phased.ConstantGammaClutter.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ConstantGammaClutter System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-241

phased.ConstantGammaClutter.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-242

phased.ConstantGammaClutter.reset

Purpose Reset random numbers and time count for clutter simulation

Syntax reset(H)

Description reset(H) resets the states of the ConstantGammaClutter object, H. This
method resets the random number generator state if the SeedSource
property is set to 'Property'. This method resets the elapsed coherence
time. Also, if the PRF property is a vector, the next call to step uses
the first PRF value in the vector.

1-243

phased.ConstantGammaClutter.step

Purpose Simulate clutter using constant gamma model

Syntax Y = step(H)
Y = step(H,X)
Y = step(H,STEERANGLE)
Y = step(H,X,STEERANGLE)

Description Y = step(H) computes the collected clutter return at each sensor. This
syntax is available when you set the TransmitSignalInputPort
property to false.

Y = step(H,X) specifies the transmit signal in X. Transmit signal
refers to the output of the transmitter while it is on during a given pulse.
This syntax is available when you set the TransmitSignalInputPort
property to true.

Y = step(H,STEERANGLE) uses STEERANGLE as the subarray steering
angle. This syntax is available when you configure H so that H.Sensor
is an array that contains subarrays and H.Sensor.SubarraySteering
is either 'Phase' or 'Time'.

Y = step(H,X,STEERANGLE) combines all input arguments. This syntax
is available when you configure H so that H.TransmitSignalInputPort
is true, H.Sensor is an array that contains subarrays, and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Input
Arguments

H

Constant gamma clutter object.

X

Transmit signal, specified as a column vector.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a
length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180

1-244

phased.ConstantGammaClutter.step

degrees, and the elevation angle must be between –90 and 90
degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In
this case, the elevation angle is assumed to be 0.

Output
Arguments

Y

Collected clutter return at each sensor. Y has dimensions N-by-M
matrix. M is the number of subarrays in the radar system if
H.Sensor contains subarrays, or the number of sensors, otherwise.
When you set the OutputFormat property to 'Samples', N
is specified in the NumSamples property. When you set the
OutputFormat property to 'Pulses', N is the total number of
samples in the next L pulses. In this case, L is specified in the
NumPulses property.

Tips The clutter simulation that ConstantGammaClutter provides is based
on these assumptions:

• The radar system is monostatic.

• The propagation is in free space.

• The terrain is homogeneous.

• The clutter patch is stationary during the coherence time. Coherence
time indicates how frequently the software changes the set of random
numbers in the clutter simulation.

• The signal is narrowband. Thus, the spatial response can be
approximated by a phase shift. Similarly, the Doppler shift can be
approximated by a phase shift.

• The radar system maintains a constant height during simulation.

• The radar system maintains a constant speed during simulation.

1-245

phased.ConstantGammaClutter.step

Examples Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB.
The effective transmitted power of the radar system is 5 kw.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the clutter simulation object. The configuration assumes the
earth is flat. The maximum clutter range of interest is 5 km, and the
maximum azimuth coverage is +/– 60 degrees.

Rmax = 5000; Azcov = 120;
tergamma = 0; tpower = 5000;
hclutter = phased.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitERP',tpower,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov,'SeedSource','Property',...
'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf; Npulse = 10;

1-246

phased.ConstantGammaClutter.step

csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

1-247

phased.ConstantGammaClutter.step

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB.
The step syntax includes the transmit signal of the radar system as an
input argument. In this case, you do not record the effective transmitted
power of the signal in a property.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the

1-248

phased.ConstantGammaClutter.step

operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the clutter simulation object and configure it to take a transmit
signal as an input argument to step. The configuration assumes the
earth is flat. The maximum clutter range of interest is 5 km, and the
maximum azimuth coverage is +/– 60 degrees.

Rmax = 5000; Azcov = 120;
tergamma = 0;
hclutter = phased.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitSignalInputPort',true,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov,'SeedSource','Property',...
'Seed',40547);

Simulate the clutter return for 10 pulses. At each step, pass the
transmit signal as an input argument. The software automatically
computes the effective transmitted power of the signal. The transmit
signal is a rectangular waveform with a pulse width of 2 µs.

tpower = 5000;
pw = 2e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf; Npulse = 10;

1-249

phased.ConstantGammaClutter.step

csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

1-250

phased.ConstantGammaClutter.step

Related
Examples

• Ground Clutter Mitigation with Moving Target Indication (MTI)
Radar
• “Example: DPCA Pulse Canceller for Clutter Rejection”

Concepts • “Clutter Modeling”

1-251

../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

phased.CosineAntennaElement

Purpose Cosine antenna element

Description The CosineAntennaElement object models an antenna with a cosine
response in both azimuth and elevation.

To compute the response of the antenna element for specified directions:

1 Define and set up your cosine antenna element. See “Construction”
on page 1-252.

2 Call step to compute the antenna response according to the
properties of phased.CosineAntennaElement. The behavior of step
is specific to each object in the toolbox.

This antenna element is not capable of supporting polarization.

Construction H = phased.CosineAntennaElement creates a cosine antenna system
object, H, that models an antenna element whose response is cosine
raised to a specified power greater than or equal to one in both the
azimuth and elevation directions.

H = phased.CosineAntennaElement(Name,Value) creates a cosine
antenna object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties FrequencyRange

Operating frequency range

Specify the operating frequency range (in Hz) of the antenna
element as a 1-by-2 row vector in the form [LowerBound
HigherBound]. The antenna element has no response outside
the specified frequency range.

Default: [0 1e20]

CosinePower

1-252

phased.CosineAntennaElement

Exponent of cosine pattern

Specify the exponent of cosine pattern as a scalar or a 1-by-2
vector. All specified values must be real numbers greater than
or equal to 1. When you set CosinePower to a scalar, both the
azimuth direction cosine pattern and the elevation direction
cosine pattern are raised to the specified value. When you set
CosinePower to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is
the exponent for the elevation direction cosine pattern.

Default: [1.5 1.5]

Methods clone Create cosine antenna object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotResponse Plot response pattern of antenna

release Allow property value and input
characteristics changes

step Output response of antenna
element

Definitions Cosine Response

The cosine response, or cosine pattern, is given by:

1-253

phased.CosineAntennaElement

P az el az elm n(,) cos ()cos ()

In this expression:

• az is the azimuth angle.

• el is the elevation angle.

• The exponents m and n are real numbers greater than or equal to 1.

The response is defined for azimuth and elevation angles between –90
and 90 degrees, inclusive. There is no response at the back of a cosine
antenna. The cosine response pattern achieves a maximum value of
1 at 0 degrees azimuth and elevation. Raising the response pattern
to powers greater than one concentrates the response in azimuth or
elevation.

Examples Calculate Response of Cosine Antenna

This example shows how to construct a cosine pattern antenna and
calculate its response at boresight (0 degrees azimuth and 0 degrees
elevation). Assume the antenna works between 800 MHz and 1.2 GHz
and its operating frequency is 1 GHz.

ha = phased.CosineAntennaElement('FrequencyRange',...
[800e6 1.2e9]);

resp = step(ha,1e9,[0; 0]);
plotResponse(ha,1e9,'RespCut','El','Format','Polar');

1-254

phased.CosineAntennaElement

See Also phased.CrossedDipoleAntennaElement |
phased.CustomAntennaElement | phased.IsotropicAntennaElement
| phased.ShortDipoleAntennaElement | phased.ULA | phased.URA |
phased.ConformalArray

1-255

phased.CosineAntennaElement.clone

Purpose Create cosine antenna object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-256

phased.CosineAntennaElement.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-257

phased.CosineAntennaElement.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-258

phased.CosineAntennaElement.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
CosineAntennaElement System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-259

phased.CosineAntennaElement.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the phased.CosineAntennaElement System object
supports polarization. An antenna element supports polarization if it
can create or respond to polarized fields. This object does not support
polarization.

Input
Arguments

h - Cosine antenna element

Cosine antenna element specified as a
phased.CosineAntennaElement System object.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if
the antenna element supports polarization or false if it does
not. Because the phased.CosineAntennaElement object does not
support polarization, flag is always returned as false.

Examples Cosine Antenna Does Not Support Polarization

Create a cosine antenna element using the
phased.CosineAntennaElement antenna element and show that it
does not support polarization.

h = phased.CosineAntennaElement('FrequencyRange',[1.0,10]*1e9);
isPolarizationCapable(h)

ans =

0

The returned value false (0) shows that the antenna element does
not support polarization.

1-260

phased.CosineAntennaElement.plotResponse

Purpose Plot response pattern of antenna

Syntax plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ) plots the element response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency
is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K
row vector. FREQ must lie within the range specified by the
FrequencyVector property of H. If you set the 'RespCut' property
of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same
axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

1-261

phased.CosineAntennaElement.plotResponse

Cut angle specified as a scalar. This argument is applicable only
when RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle
must be between –90 and 90. If RespCut is 'El', CutAngle must
be between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

’Polarization’

1-262

phased.CosineAntennaElement.plotResponse

Specify the polarization options for plotting the antenna response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

1-263

phased.CosineAntennaElement.plotResponse

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’AzimuthAngles’

Azimuth angles for plotting element response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting element response, specified as a row
vector. The ElevationAngles parameter sets the display range
and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When you set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

1-264

phased.CosineAntennaElement.plotResponse

Default: [-90:90]

’UGrid’

U coordinate values for plotting element response, specified as
a row vector. The UGrid parameter sets the display range and
resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting element response, specified
as a row vector. The VGrid parameter sets the display range
and resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set the VGrid
and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples Plot 3-D Polar Response of Cosine Antenna

This example shows how to plot the 3-D polar response of a cosine
antenna element. Construct a cosine antenna element using default
parameters. Assume the antenna operating frequency is 1 GHz. Then,
plot the antenna’s response in 3-D polar format.

hcos = phased.CosineAntennaElement;
plotResponse(hcos,1e9,'Format','Polar','RespCut','3D');

1-265

phased.CosineAntennaElement.plotResponse

Plot Azimuth-Cut of Cosine Antenna Response

This example shows how to plot an azimuth-cut of the cosine antenna
response. Construct a cosine antenna element using default parameters.
Assume the antenna operating frequency is 1 GHz. Restrict the
response to the range of azimuth angles from -30 to 30 degrees in 0.1
degree increments. The default elevation angle is 0 degrees.

hcos = phased.CosineAntennaElement;
plotResponse(hcos,1e9,'Format','Polar','RespCut','Az',...

1-266

phased.CosineAntennaElement.plotResponse

'AzimuthAngles',[-30:0.1:30],'Unit','mag');

Plot Directivity of Cosine Antenna

This example shows how to construct a cosine-pattern antenna and plot
an elevation cut of its directivity. Assume the antenna works between
1 and 2 GHz and its operating frequency is 1.5 GHz. Set the azimuth
angle cosine power to 2.5 and the elevation angle cosine power to 3.5.

sCos = phased.CosineAntennaElement('FrequencyRange',...

1-267

phased.CosineAntennaElement.plotResponse

[1e9 2e9],'CosinePower',[2.5,3.5]);
plotResponse(sCos,1.5e9,'RespCut','El','Unit','dbi');

The directivity is maximum at 0 degrees elevation and attains a value
of approximately 12 dB.

See Also uv2azel | azel2uv

1-268

phased.CosineAntennaElement.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-269

phased.CosineAntennaElement.step

Purpose Output response of antenna element

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the antenna’s voltage response
RESP at operating frequencies specified in FREQ and directions specified
in ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector
of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

1-270

phased.CosineAntennaElement.step

Output
Arguments

RESP

Voltage response of antenna element specified as an M-by-L,
complex-valued matrix. In this matrix, M represents the number
of angles specified in ANG while L represents the number of
frequencies specified in FREQ.

Definitions Cosine Response

The cosine response, or cosine pattern, is given by:

P az el az elm n(,) cos ()cos ()

In this expression:

• az is the azimuth angle.

• el is the elevation angle.

• The exponents m and n are real numbers greater than or equal to 1.

The response is defined for azimuth and elevation angles between –90
and 90 degrees, inclusive. There is no response at the back of a cosine
antenna. The cosine response pattern achieves a maximum value of
1 at 0 degrees azimuth and elevation. Raising the response pattern
to powers greater than one concentrates the response in azimuth or
elevation.

Examples Construct a cosine antenna element. The cosine response is raised to a
power of 1.5. The antenna frequency range is the IEEE® X band from
8 to 12 GHz. The antenna operates at 10 GHz. Obtain the antenna’s
response for an incident angle of 30 degrees azimuth and 5 degrees
elevation.

hant = phased.CosineAntennaElement(...
'FrequencyRange',[8e9 12e9],...
'CosinePower',1.5);

% operating frequency
fc = 10e9;

1-271

phased.CosineAntennaElement.step

% incident angle
ang = [30;5];
% use the step method to obtain the antenna's response
resp = step(hant,fc,ang);

See Also uv2azel | phitheta2azel

1-272

phased.CrossedDipoleAntennaElement

Purpose Crossed-dipole antenna element

Description The phased.CrossedDipoleAntennaElement System object models a
crossed-dipole antenna element. A crossed-dipole antenna is often used
for generating circularly polarized fields. A crossed-dipole antenna is
formed from two orthogonal short-dipole antennas, one along y-axis and
the other along the z-axis in the antenna’s local coordinate system. This
antenna object generates right-handed circularly polarized fields along
the x-axis (defined by 0° azimuth and 0° elevation angles).

To compute the response of the antenna element for specified directions:

1 Define and set up your crossed-dipole antenna element. See
“Construction” on page 1-273.

2 Call step to compute the antenna response according to the
properties of phased.CrossedDipoleAntennaElement. The behavior
of step is specific to each object in the toolbox.

Construction h = phased.CrossedDipoleAntennaElement creates the system object,
h, to model a crossed-dipole antenna element.

h = phased.CrossedDipoleAntennaElement(Name,Value) creates the
system object, h, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN).

Properties FrequencyRange

Antenna operating frequency range

Antenna operating frequency range specified as a 1-by-2 row
vector in the form of [LowerBound HigherBound]. This defines
the frequency range over which the antenna has a response. The
antenna element has no response outside the specified frequency
range.

Default: [0 1e20]

1-273

phased.CrossedDipoleAntennaElement

Methods clone Create crossed-dipole antenna
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotResponse Plot response pattern of antenna

release Allow property value and input
characteristics changes

step Output response of antenna
element

Examples Plot Response of a Crossed-Dipole Antenna

Examine the response patterns of a crossed-dipole antenna used in an
L-band radar with a frequency range between 1-2 GHz.

First, set up the radar parameters, and obtain the vertical and
horizontal polarization responses at five different directions: elevation
angles -30, -15, 0, 15 and 30 degrees, all at 0 degrees azimuth angle.
The responses are computed at an operating frequency of 1.5 GHz.

scd = phased.CrossedDipoleAntennaElement(...
'FrequencyRange',[1,2]*1e9);

fc = 1.5e9;
resp = step(scd,fc,[0,0,0,0,0;-30,-15,0,15,30]);
[resp.V, resp.H]

ans =

1-274

phased.CrossedDipoleAntennaElement

-1.0607 + 0.0000i 0.0000 - 1.2247i
-1.1830 + 0.0000i 0.0000 - 1.2247i
-1.2247 + 0.0000i 0.0000 - 1.2247i
-1.1830 + 0.0000i 0.0000 - 1.2247i
-1.0607 + 0.0000i 0.0000 - 1.2247i

Next, draw a 3-D plot of the combined polarization response.

plotResponse(scd,fc,'Format','Polar',...
'RespCut','3D','Polarization','C');

1-275

phased.CrossedDipoleAntennaElement

Algorithms The total response of a crossed-dipole antenna element is a
combination of its frequency response and spatial response.
phased.CrossedDipoleAntennaElement calculates both responses
using nearest neighbor interpolation, and then multiplies the responses
to form the total response.

1-276

phased.CrossedDipoleAntennaElement

References
[1] Mott, H., Antennas for Radar and Communications, John Wiley &
Sons, 1992.

See Also phased.CosineAntennaElement | phased.CustomAntennaElement
| phased.IsotropicAntennaElement |
phased.ShortDipoleAntennaElement | phased.ULA | phased.URA
| phased.ConformalArray | uv2azelpat | phitheta2azelpat |
uv2azel | phitheta2azel

1-277

phased.CrossedDipoleAntennaElement.clone

Purpose Create crossed-dipole antenna object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-278

phased.CrossedDipoleAntennaElement.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-279

phased.CrossedDipoleAntennaElement.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-280

phased.CrossedDipoleAntennaElement.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
phased.CrossedDipoleAntennaElement System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-281

phased.CrossedDipoleAntennaElement.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the phased.CrossedDipoleAntennaElement System
object supports polarization. An antenna element supports polarization
if it can create or respond to polarized fields. This object supports only
polarized fields.

Input
Arguments

h - Crossed-dipole antenna element

Crossed-dipole antenna element specified as a
phased.CrossedDipoleAntennaElementSystem object.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability returned as a Boolean value true if the
antenna element supports polarization or false if it does not.
Because the phased.CrossedDipoleAntennaElement antenna
element supports polarization, the returned value is always true.

Examples Crossed-Dipole Antenna Element Supports Polarization

Determine whether the phased.CrossedDipoleAntennaElement
antenna element supports polarization.

h = phased.CrossedDipoleAntennaElement;
isPolarizationCapable(h)

ans =

1

The returned value true (1) shows that the crossed-dipole antenna
element supports polarization.

1-282

phased.CrossedDipoleAntennaElement.plotResponse

Purpose Plot response pattern of antenna

Syntax plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ) plots the element response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency
is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K
row vector. FREQ must lie within the range specified by the
FrequencyVector property of H. If you set the 'RespCut' property
of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same
axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

1-283

phased.CrossedDipoleAntennaElement.plotResponse

Cut angle specified as a scalar. This argument is applicable only
when RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle
must be between –90 and 90. If RespCut is 'El', CutAngle must
be between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

’Polarization’

1-284

phased.CrossedDipoleAntennaElement.plotResponse

Specify the polarization options for plotting the antenna response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

1-285

phased.CrossedDipoleAntennaElement.plotResponse

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’AzimuthAngles’

Azimuth angles for plotting element response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting element response, specified as a row
vector. The ElevationAngles parameter sets the display range
and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When you set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

1-286

phased.CrossedDipoleAntennaElement.plotResponse

Default: [-90:90]

’UGrid’

U coordinate values for plotting element response, specified as
a row vector. The UGrid parameter sets the display range and
resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting element response, specified
as a row vector. The VGrid parameter sets the display range
and resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set the VGrid
and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples Vertical and Horizontal Responses of Crossed-Dipole
Antenna

This example shows how to create a crossed-dipole antenna operating
between 100 and 900 MHz and then how to plot its vertical polarization
response at 250 MHz in the form of a 3-D polar plot.

scd = phased.CrossedDipoleAntennaElement(...
'FrequencyRange',[100 900]*1e6);

plotResponse(scd,250e6,'Format','Polar',...

1-287

phased.CrossedDipoleAntennaElement.plotResponse

'RespCut','3D','Polarization','V');

The antenna pattern of the vertical-polarization component is almost
isotropic and has a maximum at elevation and azimuth, as shown
in the figure above.

Plot the antenna’s horizontal polarization response. The pattern of the
horizontal polarization response also has a maximum at elevation
and azimuth but no response at azimuth.

1-288

phased.CrossedDipoleAntennaElement.plotResponse

scd = phased.CrossedDipoleAntennaElement(...
'FrequencyRange',[100 900]*1e6);

plotResponse(scd,250e6,'Format','Polar',...
'RespCut','3D','Polarization','H');

Response and Directivity of Crossed-Dipole Antenna As
Elevation-Cut

Create a crossed-dipole antenna operating between 100 and 900 MHz.
Then, plot the antenna’s vertical polarization response at 250 MHz

1-289

phased.CrossedDipoleAntennaElement.plotResponse

as an elevation cut. Display the response from to elevation
in increments.

scd = phased.CrossedDipoleAntennaElement(...
'FrequencyRange',[100 900]*1e6);

plotResponse(scd,250e6,'Format','Polar',...
'RespCut','El','ElevationAngles',[-90:0.1:90],...
'Polarization','V');

Plot the antenna’s directivity at 250 MHz as an elevation cut.

1-290

phased.CrossedDipoleAntennaElement.plotResponse

plotResponse(scd,250e6,'Format','Polar','Unit','dbi',...
'RespCut','El','ElevationAngles',[-90:0.1:90]);

See Also uv2azel | azel2uv

1-291

phased.CrossedDipoleAntennaElement.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-292

phased.CrossedDipoleAntennaElement.step

Purpose Output response of antenna element

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the antenna’s voltage response,
RESP, at the operating frequencies specified in FREQ and in the
directions specified in ANG. For the crossed-dipole antenna element
object, RESP is a MATLAB struct containing two fields, RESP.H
and RESP.V, representing the horizontal and vertical polarization
components of the antenna’s response. Each field is an M-by-L matrix
containing the antenna response at the M angles specified in ANG and
at the L frequencies specified in FREQ.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector
of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle

1-293

phased.CrossedDipoleAntennaElement.step

must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

Output
Arguments

RESP

Voltage response of antenna element returned as a MATLAB
struct with fields RESP.H and RESP.V. Both RESP.H and RESP.V
contain responses for the horizontal and vertical polarization
components of the antenna radiation pattern. Both RESP.H and
RESP.V areM-by-L matrices. In these matrices,M represents the
number of angles specified in ANG, and L represents the number
of frequencies specified in FREQ.

Examples Find the response of a crossed-dipole antenna at boresight, 0° azimuth
and 0° elevation, and off-boresight at 30° azimuth and 0° elevation. The
antenna operates at frequencies between 100 and 900 MHz. Find the
response of the antenna at these angles at 250 MHz.

hcd = phased.CrossedDipoleAntennaElement(...
'FrequencyRange',[100 900]*1e6);

ang = [0 30;0 0];
fc = 250e6;
resp = step(hcd,fc,ang);

resp.H =
0.0000 - 1.2247i
0.0000 - 1.0607i

resp.V =
-1.2247
-1.2247

Algorithms The total response of a crossed-dipole antenna element is a
combination of its frequency response and spatial response.
phased.CrossedDipoleAntennaElement calculates both responses

1-294

phased.CrossedDipoleAntennaElement.step

using nearest neighbor interpolation, and then multiplies the responses
to form the total response.

See Also uv2azel | phitheta2azel

1-295

phased.CustomAntennaElement

Purpose Custom antenna element

Description The phased.CustomAntennaElement object models an antenna element
with a custom response pattern. The response pattern may be defined
for polarized or non-polarized fields.

To compute the response of the antenna element for specified directions:

1 Define and set up your custom antenna element. See “Construction”
on page 1-296.

2 Call step to compute the antenna response according to the
properties of phased.CustomAntennaElement. The behavior of step
is specific to each object in the toolbox.

Construction H = phased.CustomAntennaElement creates a system object, H, to
model an antenna element with a custom response pattern. How the
response pattern is specified depends upon whether polarization is
desired or not. The default pattern has an isotropic spatial response.

• To create a nonpolarized response pattern, set the
SpecifyPolarizationPattern property to false (default). Then,
use the RadiationPattern property to set the response pattern.

• To create a polarized response pattern, set the
SpecifyPolarizationPattern property to true. Then, use any or
all of the HorizontalMagnitudePattern, HorizontalPhasePattern,
VerticalMagnitudePattern, and VerticalPhasePattern properties
to set the response pattern.

The output response of the step method depends on whether
polarization is set or not.

H = phased.CustomAntennaElement(Name,Value) creates a custom
antenna object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN).

1-296

phased.CustomAntennaElement

Properties FrequencyVector

Response and pattern frequency vector

Specify the frequencies (in Hz) at which the frequency response
and antenna patterns are to be returned, as a 1-by-L row
vector. The elements of the vector must be in increasing order.
The antenna element has no response outside the frequency
range specified by the minimum and maximum elements of the
frequency vector.

Default: [0 1e20]

AzimuthAngles

Azimuth angles

Specify the azimuth angles (in degrees) as a length-P vector.
These values are the azimuth angles where the custom radiation
pattern is to be specified. P must be greater than 2. The azimuth
angles should lie between –180 and 180 degrees and be in strictly
increasing order.

Default: [-180:180]

ElevationAngles

Elevation angles

Specify the elevation angles (in degrees) as a length-Q vector.
These values are the elevation angles where the custom radiation
pattern is to be specified. Q must be greater than 2. The elevation
angles should lie between –90 and 90 degrees and be in strictly
increasing order.

Default: [-90:90]

FrequencyResponse

Frequency responses of antenna element

1-297

phased.CustomAntennaElement

Specify the frequency responses in decibels measured at the
frequencies defined in FrequencyVector property as a 1-by-L row
vector where L must equal the length of the vector specified in
the FrequencyVector property.

Default: [0 0]

SpecifyPolarizationPattern

Polarized array response

• When the SpecifyPolarizationPattern property is set to
false, nonpolarized radiation is transmitted or received by
the antenna element. In this case, use the RadiationPattern
property to set the antenna response pattern.

• When the SpecifyPolarizationPattern property
is set to true, polarized radiation is transmitted or
received by the antenna element. In this case, use the
HorizontalMagnitudePattern and HorizontalPhasePattern
properties to set the horizontal polarization response
pattern and the VerticalMagnitudePattern and
VerticalPhasePattern properties to set the vertical
polarization response pattern.

Default: false

RadiationPattern

Magnitude of combined antenna radiation pattern

The magnitude of the combined polarization antenna radiation
pattern specified as a Q-by-P matrix or a Q-by-P-by-L array. This
property is used only when the SpecifyPolarizationPattern
property is set to false. Magnitude units are in dB.

• If the value of this property is aQ-by-Pmatrix, the same pattern
is applied to all frequencies specified in the FrequencyVector
property.

1-298

phased.CustomAntennaElement

• If the value is a Q-by-P-by-L array, each Q-by-P page of the
array specifies a pattern for the corresponding frequency
specified in the FrequencyVector property.

If the pattern contains a NaN at any azimuth and elevation
direction, it is converted to -Inf, indicating zero response in
that direction. The custom antenna object uses interpolation to
estimate the response of the antenna at a given direction. To
avoid interpolation errors, the custom response pattern should
contain azimuth angles in the range[180,180] degrees. You
should also set the range of elevation angles to [90,90] degrees.

Default: A 181-by-361 matrix with all elements equal to 0 dB

HorizontalMagnitudePattern

Magnitude of horizontal polarization component of antenna
radiation pattern

The magnitude of the horizontal polarization component of
the antenna radiation pattern specified as a Q-by-P matrix
or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Magnitude
units are in dB.

• If the value of this property is aQ-by-Pmatrix, the same pattern
is applied to all frequencies specified in the FrequencyVector
property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the
array specifies a pattern for the corresponding frequency
specified in the FrequencyVector property.

If the magnitude pattern contains a NaN at any azimuth and
elevation direction, it is converted to -Inf, indicating zero

1-299

phased.CustomAntennaElement

response in that direction. The custom antenna object uses
interpolation to estimate the response of the antenna at a given
direction. To avoid interpolation errors, the custom response
pattern should contain azimuth angles in the range [180,180]
nd elevation angles in the range [90,90] .

Default: A 181-by-361 matrix with all elements equal to 0 dB

HorizontalPhasePattern

Phase of horizontal polarization component of antenna radiation
pattern

The phase of the horizontal polarization component of the
antenna radiation pattern specified as a Q-by-P matrix or
a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Phase
units are in degrees.

• If the value of this property is aQ-by-Pmatrix, the same pattern
is applied to all frequencies specified in the FrequencyVector
property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the
array specifies a pattern for the corresponding frequency
specified in the FrequencyVector property.

The custom antenna object uses interpolation to estimate
the response of the antenna at a given direction. To avoid
interpolation errors, the custom response pattern should contain
azimuth angles in the range[180,180] and elevation angles
in the range [90,90] .

Default: A 181-by-361 matrix with all elements equal to 0°

VerticalMagnitudePattern

1-300

phased.CustomAntennaElement

Magnitude of vertical polarization component of antenna
radiation pattern

The magnitude of the vertical polarization component of the
antenna radiation pattern specified as a Q-by-P matrix or
a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Magnitude
units are in dB.

• If the value of this property is aQ-by-Pmatrix, the same pattern
is applied to all frequencies specified in the FrequencyVector
property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the
array specifies a pattern for the corresponding frequency
specified in the FrequencyVector property.

If the pattern contains a NaN at any azimuth and elevation
direction, it is converted to -Inf, indicating zero response in
that direction. The custom antenna object uses interpolation to
estimate the response of the antenna at a given direction. To
avoid interpolation errors, the custom response pattern should
contain azimuth angles in the range[180,180] and elevation
angles in the range [90,90] .

Default: A 181-by-361 matrix with all elements equal to 0 dB

VerticalPhasePattern

Phase of vertical polarization component of antenna radiation
pattern

The phase of the vertical polarization component of the
antenna radiation pattern specified as a Q-by-P matrix or
a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Phase
units are in degrees.

1-301

phased.CustomAntennaElement

• If the value of this property is aQ-by-Pmatrix, the same pattern
is applied to all frequencies specified in the FrequencyVector
property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the
array specifies a pattern for the corresponding frequency
specified in the FrequencyVector property.

The custom antenna object uses interpolation to estimate
the response of the antenna at a given direction. To avoid
interpolation errors, the custom response pattern should contain
azimuth angles in the range[180,180] and elevation angles
in the range [90,90] .

Default: A 181-by-361 matrix with all elements equal to 0°

Methods clone Create custom antenna object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotResponse Plot response pattern of antenna

release Allow property value and input
characteristics changes

step Output response of antenna
element

1-302

phased.CustomAntennaElement

Examples Response and Directivity of Custom Antenna

Create a user-defined antenna with cosine pattern, and plot an
elevation cut of the antenna’s power response.

The user-defined pattern is omnidirectional in the azimuth direction
and has a cosine pattern in the elevation direction. Assume the antenna
operates at 1 GHz. Get the response at 0 degrees azimuth and 30
degrees elevation.

ha = phased.CustomAntennaElement;
ha.AzimuthAngles = -180:180;
ha.ElevationAngles = -90:90;
ha.RadiationPattern = mag2db(repmat(cosd(ha.ElevationAngles)',...

1,numel(ha.AzimuthAngles)));
resp = step(ha,1e9,[0;30])

resp =

0.8660

Plot an elevation cut of the power response.

plotResponse(ha,1e9,'RespCut','El','Format','Polar');

1-303

phased.CustomAntennaElement

Plot an elevation cut of the directivity.

plotResponse(ha,1e9,'RespCut','El','Format','Polar','Unit','dbi');

1-304

phased.CustomAntennaElement

Antenna Radiation Pattern in U-V Coordinates

Define a custom antenna in space. Then, calculate and plot the
response.

Define the radiation pattern (in dB) of an antenna in terms of and
coordinates within the unit circle.

u = -1:0.01:1;
v = -1:0.01:1;

1-305

phased.CustomAntennaElement

[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Create an antenna with this radiation pattern. Convert
coordinates to azimuth and elevation coordinates.

[pat_azel,az,el] = uv2azelpat(pat_uv,u,v);
ha = phased.CustomAntennaElement(...

'AzimuthAngles',az,'ElevationAngles',el,...
'RadiationPattern',pat_azel);

Calculate the response in the direction , . Assume the
antenna operates at 1 GHz. The output of the step method is in linear
units.

dir_uv = [0.5;0];
dir_azel = uv2azel(dir_uv);
fc = 1e9;
resp = step(ha,fc,dir_azel)

resp =

1.1048

Plot the 3D response in UV coordinates.

plotResponse(ha,fc,'Format','UV','RespCut','3D');

1-306

phased.CustomAntennaElement

Display the antenna response as a line plot in UV coordinates.

plotResponse(ha,fc,'Format','UV');

1-307

phased.CustomAntennaElement

Polarized Antenna Radiation Patterns

Model a short dipole antenna oriented along the -axis of the local
antenna coordinate system. For this type of antenna, the horizontal and

vertical components of the electric field are given by

and .

1-308

phased.CustomAntennaElement

Specify a normalized radiation pattern of a short dipole antenna terms
of azimuth, , and elevation, , coordinates. The vertical and
horizontal radiation patterns are normalized to a maximum of unity.

az = [-180:180];
el = [-90:90];
[az_grid,el_grid] = meshgrid(az,el);
horz_pat_azel = ...

mag2db(abs(sind(az_grid)));
vert_pat_azel = ...

mag2db(abs(sind(el_grid).*cosd(az_grid)));

Set up the antenna. Specify the SpecifyPolarizationPattern
property to produce polarized radiation. In addition, set the
HorizontalMagnitudePattern and VerticalMagnitudePattern
properties. The HorizontalPhasePattern and VerticalPhasePattern
properties take default values of zero.

ha = phased.CustomAntennaElement(...
'AzimuthAngles',az,'ElevationAngles',el,...
'SpecifyPolarizationPattern',true,...
'HorizontalMagnitudePattern',horz_pat_azel,...
'VerticalMagnitudePattern',vert_pat_azel);

Assume the antenna operates at 1 GHz.

fc = 1e9;

Display the vertical response pattern.

plotResponse(ha,fc,'Format','Polar',...
'RespCut','3D','Polarization','V');

1-309

phased.CustomAntennaElement

Display the horizontal response pattern.

plotResponse(ha,fc,'Format','Polar',...
'RespCut','3D','Polarization','H');

1-310

phased.CustomAntennaElement

The combined polarization response, shown below, best illustrates the
-axis polarity of the dipole.

plotResponse(ha,fc,'Format','Polar',...
'RespCut','3D','Polarization','C');

1-311

phased.CustomAntennaElement

Algorithms The total response of a custom antenna element is a
combination of its frequency response and spatial response.
phased.CustomAntennaElement calculates both responses using
nearest neighbor interpolation, and then multiplies the responses to
form the total response.

See Also phased.ConformalArray | phased.CrossedDipoleAntennaElement |
phased.CosineAntennaElement | phased.IsotropicAntennaElement

1-312

phased.CustomAntennaElement

| phased.ShortDipoleAntennaElement | phased.ULA | phased.URA |
uv2azelpat | phitheta2azelpat | uv2azel | phitheta2azel

1-313

phased.CustomAntennaElement.clone

Purpose Create custom antenna object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-314

phased.CustomAntennaElement.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-315

phased.CustomAntennaElement.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-316

phased.CustomAntennaElement.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
CustomAntennaElement System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-317

phased.CustomAntennaElement.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the phased.CustomAntennaElement System object
supports polarization. An antenna element supports polarization if it
can create or respond to polarized fields. This antenna object supports
both polarized and nonpolarized fields.

Input
Arguments

h - Custom antenna element

Custom antenna element specified as a
phased.CustomAntennaElement.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability returned as a Boolean value true
if the antenna element supports polarization or false
if it does not. The returned value depends upon the
value of the SpecifyPolarizationPattern property. If
SpecifyPolarizationPattern is true, then flag is true.
Otherwise it is false.

Examples Custom Antenna Element Polarization Capability

Determine whether the phased.CustomAntennaElement antenna
element supports polarization when SpecifyPolarizationPattern is
set to true.

h = phased.CustomAntennaElement(...
'SpecifyPolarizationPattern',true);

isPolarizationCapable(h)

ans =

1

1-318

phased.CustomAntennaElement.isPolarizationCapable

The returned value true (1) shows that this antenna element supports
polarization when the 'SpecifyPolarizationPattern' property is
set to true.

1-319

phased.CustomAntennaElement.plotResponse

Purpose Plot response pattern of antenna

Syntax plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ) plots the element response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency
is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K
row vector. FREQ must lie within the range specified by the
FrequencyVector property of H. If you set the 'RespCut' property
of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same
axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

1-320

phased.CustomAntennaElement.plotResponse

Cut angle specified as a scalar. This argument is applicable only
when RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle
must be between –90 and 90. If RespCut is 'El', CutAngle must
be between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

’Polarization’

1-321

phased.CustomAntennaElement.plotResponse

Specify the polarization options for plotting the antenna response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

1-322

phased.CustomAntennaElement.plotResponse

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’AzimuthAngles’

Azimuth angles for plotting element response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting element response, specified as a row
vector. The ElevationAngles parameter sets the display range
and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When you set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

1-323

phased.CustomAntennaElement.plotResponse

Default: [-90:90]

’UGrid’

U coordinate values for plotting element response, specified as
a row vector. The UGrid parameter sets the display range and
resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting element response, specified
as a row vector. The VGrid parameter sets the display range
and resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set the VGrid
and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples Plot Response and Directivity of Custom Antenna

Create a custom antenna with a cosine pattern. Then, plot the
antenna’s response.

Create the antenna and calculate the response. The user-defined
pattern is omnidirectional in the azimuth direction and has a cosine
pattern in the elevation direction. Assume the antenna works at 1 GHz.

fc = 1e9;
sCust = phased.CustomAntennaElement;

1-324

phased.CustomAntennaElement.plotResponse

sCust.AzimuthAngles = -180:180;
sCust.ElevationAngles = -90:90;
sCust.RadiationPattern = mag2db(repmat(cosd(sCust.ElevationAngles)',..

1,numel(sCust.AzimuthAngles)));
resp = step(sCust,fc,[0;0]);

Plot an elevation cut of the magnitude response as a line plot.

plotResponse(sCust,fc,'RespCut','El','Format','Line','Unit','mag');

1-325

phased.CustomAntennaElement.plotResponse

Plot an elevation cut of the directivity as a line plot, showing that the
maximum directivity is approximately 2 dB.

plotResponse(sCust,fc,'RespCut','El','Format','Line','Unit','dbi');

Plot Response of Custom Antenna Over Selected Range of
Angles

Create an antenna with a custom response. The user-defined pattern is
omnidirectional in the azimuth direction and has a cosine pattern in the

1-326

phased.CustomAntennaElement.plotResponse

elevation direction. Assume the antenna operates at a frequency of 1
GHz. Display the 3-D response for a 60 degree range of azimuth and
elevation angles centered at 0 degrees azimuth and 0 degrees elevation
in 0.1 degree increments.

fc = 1e9;
sCust = phased.CustomAntennaElement;
sCust.AzimuthAngles = -180:180;
sCust.ElevationAngles = -90:90;
sCust.RadiationPattern = mag2db(repmat(cosd(sCust.ElevationAngles)',..

1,numel(sCust.AzimuthAngles)));
resp = step(sCust,fc,[0;0]);
plotResponse(sCust,fc,'RespCut','3D','Format','Polar',...

'AzimuthAngles',[-30:0.1:30],'ElevationAngles',...
[-30:0.1:30],'Unit','pow');

1-327

phased.CustomAntennaElement.plotResponse

See Also uv2azel | azel2uv

1-328

phased.CustomAntennaElement.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-329

phased.CustomAntennaElement.step

Purpose Output response of antenna element

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the antenna’s voltage
response RESP at operating frequencies specified in FREQ
and directions specified in ANG. The form of RESP depends
upon whether the antenna element supports polarization as
determined by the SpecifyPolarizationPattern property.
If SpecifyPolarizationPattern is set to false, RESP is an
M-by-L matrix containing the antenna response at the M angles
specified in ANG and at theL frequencies specified in FREQ. If
SpecifyPolarizationPattern is set to true, RESP is a MATLAB
struct containing two fields, RESP.H and RESP.V, representing the
antenna’s response in horizontal and vertical polarization, respectively.
Each field is an M-by-L matrix containing the antenna response at the
M angles specified in ANG and at theL frequencies specified in FREQ.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector
of length L.

ANG

1-330

phased.CustomAntennaElement.step

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

Output
Arguments

RESP

Voltage response of antenna element. The output depends on
whether the antenna element supports polarization or not.

• If the antenna element does not support polarization, RESP is
an M-by-L matrix. In this matrix, M represents the number
of angles specified in ANG while L represents the number of
frequencies specified in FREQ.

• If the antenna element supports polarization, RESP is a
MATLAB struct with fields RESP.H and RESP.V containing
responses for the horizontal and vertical polarization
components of the antenna radiation pattern. RESP.H and
RESP.V are M-by-L matrices. In these matrices, M represents
the number of angles specified in ANG while L represents the
number of frequencies specified in FREQ.

Examples Construct a user defined antenna with an omnidirectional response in
azimuth and a cosine pattern in elevation. The antenna operates at 1
GHz. Find the response of the antenna at the boresight.

ha = phased.CustomAntennaElement;
ha.AzimuthAngles = -180:180;
ha.ElevationAngles = -90:90;
ha.RadiationPattern = mag2db(repmat(cosd(ha.ElevationAngles)',...

1,numel(ha.AzimuthAngles)));

1-331

phased.CustomAntennaElement.step

resp = step(ha,1e9,[0; 0]);

resp =

1

Algorithms The total response of a custom antenna element is a
combination of its frequency response and spatial response.
phased.CustomAntennaElement calculates both responses using
nearest neighbor interpolation, and then multiplies the responses to
form the total response.

See Also uv2azel | phitheta2azel

1-332

phased.CustomMicrophoneElement

Purpose Custom microphone

Description The CustomMicrophoneElement object creates a custom microphone
element.

To compute the response of the microphone element for specified
directions:

1 Define and set up your custom microphone element. See
“Construction” on page 1-333.

2 Call step to compute the response according to the properties of
phased.CustomMicrophoneElement. The behavior of step is specific
to each object in the toolbox.

Construction H = phased.CustomMicrophoneElement creates a custom microphone
system object, H, that models a custom microphone element.

H = phased.CustomMicrophoneElement(Name,Value) creates a
custom microphone object, H, with each specified property set to the
specified value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties FrequencyVector

Operating frequency vector

Specify the frequencies in hertz where the frequency responses
of element are measured as a vector. The elements of the vector
must be increasing. The microphone element has no response
outside the specified frequency range.

Default: [0 1e20]

FrequencyResponse

Frequency responses

Specify the frequency responses in decibels measured at the
frequencies defined in the FrequencyVector property as a row

1-333

phased.CustomMicrophoneElement

vector. The length of the vector must equal the length of the
frequency vector specified in the FrequencyVector property.

Default: [0 0]

PolarPatternFrequencies

Polar pattern measuring frequencies

Specify the measuring frequencies in hertz of the polar patterns
as a row vector of length M. The measuring frequencies must be
within the frequency range specified in the FrequencyVector
property.

Default: 1e3

PolarPatternAngles

Polar pattern measuring angles

Specify the measuring angles in degrees of the polar patterns
as a row vector of length N. The angles are measured from the
central pickup axis of the microphone, and must be between –180
and 180, inclusive.

Default: [-180:180]

PolarPattern

Polar pattern

Specify the polar patterns of the microphone element as an
M-by-N matrix. M is the number of measuring frequencies
specified in the PolarPatternFrequencies property. N is the
number of measuring angles specified in the PolarPatternAngles
property. Each row of the matrix represents the magnitude of
the polar pattern (in decibels) measured at the corresponding
frequency specified in the PolarPatternFrequencies property
and corresponding angles specified in the PolarPatternAngles
property. The pattern is assumed to be measured in the azimuth

1-334

phased.CustomMicrophoneElement

plane where the elevation angle is 0 and where the central pickup
axis is assumed to be 0 degrees azimuth and 0 degrees elevation.
The polar pattern is assumed to be symmetric around the central
axis and therefore the microphone’s response pattern in 3-D space
can be constructed from the polar pattern.

Default: An omnidirectional pattern with 0 dB response
everywhere

Methods clone Create omnidirectional
microphone object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotResponse Plot response pattern of
microphone

release Allow property value and input
characteristics changes

step Output response of microphone

Examples Create a custom Cardioid microphone, and calculate that microphone’s
response at response at 500, 1500, and 2000 Hz in the directions [0;0]
and [40;50].

h = phased.CustomMicrophoneElement;
h.PolarPatternFrequencies = [500 1000];
h.PolarPattern = mag2db([...

1-335

phased.CustomMicrophoneElement

0.5+0.5*cosd(h.PolarPatternAngles);...
0.6+0.4*cosd(h.PolarPatternAngles)]);

resp = step(h,[500 1500 2000],[0 0;40 50]');
plotResponse(h,500,'RespCut','Az','Format','Polar');

1-336

phased.CustomMicrophoneElement

Algorithms The total response of a custom microphone element is a
combination of its frequency response and spatial response.
phased.CustomMicrophoneElement calculates both responses using
nearest neighbor interpolation and then multiplies them to form the
total response. When the PolarPatternFrequencies property value
is nonscalar, the object specifies multiple polar patterns. In this case,
the interpolation uses the polar pattern that is measured closest to the
specified frequency.

See Also phased.OmnidirectionalMicrophoneElement | phased.ULA |
phased.URA | phased.ConformalArray | uv2azel | phitheta2azel

1-337

phased.CustomMicrophoneElement.clone

Purpose Create omnidirectional microphone object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-338

phased.CustomMicrophoneElement.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-339

phased.CustomMicrophoneElement.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-340

phased.CustomMicrophoneElement.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
CustomMicrophoneElement System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-341

phased.CustomMicrophoneElement.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the phased.CustomMicrophoneElement supports
polarization. An element supports polarization if it can create or
respond to polarized fields. This microphone element, as with all
microphone elements, does not support polarization.

Input
Arguments

h - Custom microphone element

Custom microphone element specified as a
phased.CustomMicrophoneElement System object.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability returned as a Boolean value true if the
microphone element supports polarization or false if it does not.
Because the phased.CustomMicrophoneElement object does not
support polarization, flag is always returned as false.

Examples Custom Microphone Element does not Support Polarization

Show that the phased.CustomMicrophoneElement microphone element
does not support polarization.

h = phased.CustomMicrophoneElement;
isPolarizationCapable(h)

ans =

0

The returned value false (0) shows that the custom microphone
element does not support polarization.

1-342

phased.CustomMicrophoneElement.plotResponse

Purpose Plot response pattern of microphone

Syntax plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ) plots the element response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency
is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K
row vector. FREQ must lie within the range specified by the
FrequencyVector property of H. If you set the 'RespCut' property
of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same
axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

1-343

phased.CustomMicrophoneElement.plotResponse

Cut angle specified as a scalar. This argument is applicable only
when RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle
must be between –90 and 90. If RespCut is 'El', CutAngle must
be between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

’Polarization’

1-344

phased.CustomMicrophoneElement.plotResponse

Specify the polarization options for plotting the antenna response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

1-345

phased.CustomMicrophoneElement.plotResponse

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’AzimuthAngles’

Azimuth angles for plotting element response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting element response, specified as a row
vector. The ElevationAngles parameter sets the display range
and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When you set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

1-346

phased.CustomMicrophoneElement.plotResponse

Default: [-90:90]

’UGrid’

U coordinate values for plotting element response, specified as
a row vector. The UGrid parameter sets the display range and
resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting element response, specified
as a row vector. The VGrid parameter sets the display range
and resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set the VGrid
and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples Azimuth Response and Directivity of Cardioid Microphone

Design a cardioid microphone to operate in the frequency range between
500 and 1000 Hz.

h = phased.CustomMicrophoneElement;
h.PolarPatternFrequencies = [500 1000];
h.PolarPattern = mag2db([...

0.5+0.5*cosd(h.PolarPatternAngles);...
0.6+0.4*cosd(h.PolarPatternAngles)]);

1-347

phased.CustomMicrophoneElement.plotResponse

Display a polar plot of an azimuth cut of the response at 500 Hz and
1000 Hz.

fc = 500;
plotResponse(h,[fc 2*fc],'RespCut','Az','Format','Polar');

Plot the directivity as a line plot for the same two frequencies.

plotResponse(h,[fc 2*fc],'RespCut','Az','Format','Line','Unit','dbi');

1-348

phased.CustomMicrophoneElement.plotResponse

Response of Cardioid Microphone in U/V Space

Plot a -cut of the response of a custom cardioid microphone that is
designed to operate in the frequency range 500-1000 Hz.

Create a cardioid microphone.

h = phased.CustomMicrophoneElement;
h.PolarPatternFrequencies = [500 1000];

1-349

phased.CustomMicrophoneElement.plotResponse

h.PolarPattern = mag2db([...
0.5+0.5*cosd(h.PolarPatternAngles);...
0.6+0.4*cosd(h.PolarPatternAngles)]);

Plot the response.

fc = 500;
plotResponse(h,fc,'Format','UV');

1-350

phased.CustomMicrophoneElement.plotResponse

3-D Response of Cardioid Microphone Over Restricted Range
of Angles

Plot the 3-D response of a custom cardioid microphone in space but with
both the azimuth and elevation angles restricted to the range -40 to 40
degrees in 0.1 degree increments.

Create a custom microphone element with a cardioid pattern.

h = phased.CustomMicrophoneElement;
h.PolarPatternFrequencies = [500 1000];
h.PolarPattern = mag2db([...

0.5+0.5*cosd(h.PolarPatternAngles);...
0.6+0.4*cosd(h.PolarPatternAngles)]);

Plot the 3-D response.

fc = 500;
plotResponse(h,fc,'Format','polar','RespCut','3D',...

'Unit','mag','AzimuthAngles',[-40:0.1:40],...
'ElevationAngles',[-40:0.1:40]);

1-351

phased.CustomMicrophoneElement.plotResponse

See Also uv2azel | azel2uv

1-352

phased.CustomMicrophoneElement.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-353

phased.CustomMicrophoneElement.step

Purpose Output response of microphone

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the microphone’s magnitude
response, RESP, at frequencies specified in FREQ and directions specified
in ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Microphone object.

FREQ

Frequencies in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

1-354

phased.CustomMicrophoneElement.step

Output
Arguments

RESP

Response of microphone. RESP is an M-by-L matrix that contains
the responses of the microphone element at the M angles specified
in ANG and the L frequencies specified in FREQ.

Examples Construct a custom cardioid microphone with an operating frequency
of 500 Hz. Find the microphone response in the directions of [0;0] and
[40;50].

h = phased.CustomMicrophoneElement;
h.PolarPatternFrequencies = [500 1000];
h.PolarPattern = mag2db([...

0.5+0.5*cosd(h.PolarPatternAngles);...
0.6+0.4*cosd(h.PolarPatternAngles)]);

fc = 500; ang = [0 0;40 50]';
resp = step(h,fc,ang);

Algorithms The total response of a custom microphone element is a
combination of its frequency response and spatial response.
phased.CustomMicrophoneElement calculates both responses using
nearest neighbor interpolation and then multiplies them to form the
total response. When the PolarPatternFrequencies property value
is nonscalar, the object specifies multiple polar patterns. In this case,
the interpolation uses the polar pattern that is measured closest to the
specified frequency.

See Also uv2azel | phitheta2azel

1-355

phased.DPCACanceller

Purpose Displaced phase center array (DPCA) pulse canceller

Description The DPCACanceller object implements a displaced phase center array
pulse canceller.

To compute the output signal of the space time pulse canceller:

1 Define and set up your DPCA pulse canceller. See “Construction”
on page 1-356.

2 Call step to execute the DPCA algorithm according to the properties
of phased.DPCACanceller. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.DPCACanceller creates a displaced phase center array
(DPCA) canceller System object, H. The object performs two-pulse DPCA
processing on the input data.

H = phased.DPCACanceller(Name,Value) creates a DPCA object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-356

phased.DPCACanceller

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) of the received signal
in hertz as a scalar.

Default: 1

DirectionSource

Source of receiving mainlobe direction

Specify whether the targeting direction for the STAP processor
comes from the Direction property of this object or from an
input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the
targeting direction.

'Input port' An input argument in each invocation of step specifies
the targeting direction.

Default: 'Property'

Direction

Receiving mainlobe direction

1-357

phased.DPCACanceller

Specify the receiving mainlobe direction of the receiving sensor
array as a column vector of length 2. The direction is specified in
the format of [AzimuthAngle;ElevationAngle] (in degrees). The
azimuth angle should be between –180 and 180. The elevation
angle should be between –90 and 90. This property applies when
you set the DirectionSource property to 'Property'.

Default: [0; 0]

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor
comes from the Doppler property of this object or from an input
argument in step. Values of this property are:

'Property' The Doppler property of this object specifies the
Doppler.

'Input port' An input argument in each invocation of step specifies
the Doppler.

Default: 'Property'

Doppler

Targeting Doppler frequency (hertz)

Specify the targeting Doppler of the STAP processor as a scalar.
This property applies when you set the DopplerSource property
to 'Property'.

Default: 0

WeightsOutputPort

Output processing weights

1-358

phased.DPCACanceller

To obtain the weights used in the STAP processor, set this
property to true and use the corresponding output argument
when invoking step. If you do not want to obtain the weights, set
this property to false.

Default: false

PreDopplerOutput

Output pre-Doppler result

Set this property to true to output the processing result before
applying the Doppler filtering. Set this property to false to
output the processing result after the Doppler filtering.

Default: false

Methods clone Create DPCA object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform DPCA processing on
input data

Examples Process the data cube using a DPCA processor. The weights are
calculated for the 71st cell of a collected data cube. The look direction
is [0; 0] degrees and the Doppler is 12980 Hz.

1-359

phased.DPCACanceller

load STAPExampleData; % load data
Hs = phased.DPCACanceller('SensorArray',STAPEx_HArray,...

'PRF',STAPEx_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'WeightsOutputPort',true,...
'DirectionSource','Input port',...
'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);
Hresp = phased.AngleDopplerResponse(...

'SensorArray',Hs.SensorArray,...
'OperatingFrequency',Hs.OperatingFrequency,...
'PRF',Hs.PRF,...
'PropagationSpeed',Hs.PropagationSpeed);

plotResponse(Hresp,w);

1-360

phased.DPCACanceller

References [1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

1-361

phased.DPCACanceller

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also phased.ADPCACanceller | phased.AngleDopplerResponse |
phased.STAPSMIBeamformer | uv2azel | phitheta2azel

1-362

phased.DPCACanceller.clone

Purpose Create DPCA object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-363

phased.DPCACanceller.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-364

phased.DPCACanceller.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-365

phased.DPCACanceller.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the DPCACanceller
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-366

phased.DPCACanceller.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-367

phased.DPCACanceller.step

Purpose Perform DPCA processing on input data

Syntax Y = step(H,X,CUTIDX)
Y = step(H,X,CUTIDX,ANG)
Y = step(___ ,DOP)
[Y,W] = step(___)

Description Y = step(H,X,CUTIDX) applies the DPCA pulse cancellation algorithm
to the input data X. The algorithm calculates the processing weights
according to the range cell specified by CUTIDX. This syntax is
available when the DirectionSource property is 'Property' and
the DopplerSource property is 'Property'. The receiving mainlobe
direction is the Direction property value. The output Y contains the
result of pulse cancellation either before or after Doppler filtering,
depending on the PreDopplerOutput property value.

Y = step(H,X,CUTIDX,ANG) uses ANG as the receiving mainlobe
direction. This syntax is available when the DirectionSource property
is 'Input port' and the DopplerSource property is 'Property'.

Y = step(___ ,DOP) uses DOP as the targeting Doppler frequency. This
syntax is available when the DopplerSource property is 'Input port'.

[Y,W] = step(___) returns the additional output, W, as the processing
weights. This syntax is available when the WeightsOutputPort
property is true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

1-368

phased.DPCACanceller.step

Input
Arguments

H

Pulse canceller object.

X

Input data. X must be a 3-dimensional M-by-N-by-P numeric
array whose dimensions are (range, channels, pulses).

CUTIDX

Range cell.

ANG

Receiving mainlobe direction. ANG must be a 2-by-1 vector in
the form [AzimuthAngle; ElevationAngle], in degrees. The
azimuth angle must be between –180 and 180. The elevation
angle must be between –90 and 90.

Default: Direction property of H

DOP

Targeting Doppler frequency in hertz. DOP must be a scalar.

Default: Doppler property of H

Output
Arguments

Y

Result of applying pulse cancelling to the input data. The
meaning and dimensions of Y depend on the PreDopplerOutput
property of H:

• If PreDopplerOutput is true, Y contains the pre-Doppler data.
Y is an M-by-(P–1) matrix. Each column in Y represents the
result obtained by cancelling the two successive pulses.

• If PreDopplerOutput is false, Y contains the result of applying
an FFT-based Doppler filter to the pre-Doppler data. The
targeting Doppler is the Doppler property value. Y is a column
vector of length M.

1-369

phased.DPCACanceller.step

W

Processing weights the pulse canceller used to obtain the
pre-Doppler data. The dimensions of W depend on the
PreDopplerOutput property of H:

• If PreDopplerOutput is true, W is a 2N-by-(P-1) matrix. The
columns in W correspond to successive pulses in X.

• If PreDopplerOutput is false, W is a column vector of length
(N*P).

Examples Process the data cube using a DPCA processor. The weights are
calculated for the 71st cell of a collected data cube. The look direction
is [0; 0] degrees and the Doppler is 12980 Hz.

load STAPExampleData; % load data
Hs = phased.DPCACanceller('SensorArray',STAPEx_HArray,...

'PRF',STAPEx_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'WeightsOutputPort',true,...
'DirectionSource','Input port',...
'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);

See Also uv2azel | phitheta2azel

1-370

phased.ElementDelay

Purpose Sensor array element delay estimator

Description The ElementDelay object calculates the signal delay for elements in
an array.

To compute the signal delay across the array elements:

1 Define and set up your element delay estimator. See “Construction”
on page 1-371.

2 Call step to estimate the delay according to the properties of
phased.ElementDelay. The behavior of step is specific to each object
in the toolbox.

Construction H = phased.ElementDelay creates an element delay estimator System
object, H. The object calculates the signal delay for elements in an array
when the signal arrives the array from specified directions. By default,
a 2-element uniform linear array (ULA) is used.

H = phased.ElementDelay(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array used to calculate the delay

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-371

phased.ElementDelay

Default: Speed of light

Methods clone Create element delay object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Calculate delay for elements

Examples Element Delay for Uniform Linear Array

Calculate the element delay for a uniform linear array when the input
is impinging on the array from 30 degrees azimuth and 20 degrees
elevation.

ha = phased.ULA('NumElements',4);
hed = phased.ElementDelay('SensorArray',ha);
tau = step(hed,[30;20])

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ArrayGain | phased.ArrayResponse |
phased.SteeringVector

1-372

phased.ElementDelay.clone

Purpose Create element delay object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-373

phased.ElementDelay.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-374

phased.ElementDelay.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-375

phased.ElementDelay.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the ElementDelay
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-376

phased.ElementDelay.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-377

phased.ElementDelay.step

Purpose Calculate delay for elements

Syntax TAU = step(H,ANG)

Description TAU = step(H,ANG) returns the delay TAU of each element relative
to the array’s phase center for the signal incident directions specified
by ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Element delay object.

ANG

Signal incident directions in degrees. ANG can be either a 2-by-M
matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

1-378

phased.ElementDelay.step

Output
Arguments

TAU

Delay in seconds.TAU is an N-by-M matrix, where N is the number
of elements in the array. Each column of TAU contains the delays
of the array elements for the corresponding direction specified
in ANG.

Examples Element Delay for Uniform Linear Array

Calculate the element delay for a uniform linear array when the input
is impinging on the array from 30 degrees azimuth and 20 degrees
elevation.

ha = phased.ULA('NumElements',4);
hed = phased.ElementDelay('SensorArray',ha);
tau = step(hed,[30;20])

See Also uv2azel | phitheta2azel

1-379

phased.ESPRITEstimator

Purpose ESPRIT direction of arrival (DOA) estimator

Description The ESPRITEstimator object computes a estimation of signal
parameters via rotational invariance (ESPRIT) direction of arrival
estimate.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page
1-380.

2 Call step to estimate the DOA according to the properties of
phased.ESPRITEstimator. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.ESPRITEstimator creates an ESPRIT DOA estimator
System object, H. The object estimates the signal’s direction-of-arrival
(DOA) using the ESPRIT algorithm with a uniform linear array (ULA).

H = phased.ESPRITEstimator(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-380

phased.ESPRITEstimator

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to
estimate the covariance matrix as a nonnegative integer. Each
additional smoothing handles one extra coherent source, but
reduces the effective number of element by 1. The maximum
value of this property is M–2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto'
or 'Property'. If you set this property to 'Auto', the
number of signals is estimated by the method specified by the
NumSignalsMethod property.

1-381

phased.ESPRITEstimator

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

Specify the method to estimate the number of signals as one of
'AIC' or 'MDL'. The 'AIC' uses the Akaike Information Criterion
and the 'MDL' uses Minimum Description Length criterion. This
property applies when you set the NumSignalsSource property
to 'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This
property applies when you set the NumSignalsSource property
to 'Property'.

Default: 1

Method

Type of least squares method

Specify the least squares method used for ESPRIT as one of 'TLS'
or 'LS'. 'TLS' refers to total least squares and 'LS'refers to
least squares.

Default: 'TLS'

RowWeighting

Row weighting factor

Specify the row weighting factor for signal subspace eigenvectors
as a positive integer scalar. This property controls the weights
applied to the selection matrices. In most cases the higher value

1-382

phased.ESPRITEstimator

the better. However, it can never be greater than (N-1)/2 where
N is the number of elements of the array.

Default: 1

Methods clone Create ESPRIT DOA estimator
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform DOA estimation

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.ESPRITEstimator('SensorArray',ha,...

'OperatingFrequency',fc);

1-383

phased.ESPRITEstimator

doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60])

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also broadside2az

1-384

phased.ESPRITEstimator.clone

Purpose Create ESPRIT DOA estimator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-385

phased.ESPRITEstimator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-386

phased.ESPRITEstimator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-387

phased.ESPRITEstimator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ESPRITEstimator System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-388

phased.ESPRITEstimator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-389

phased.ESPRITEstimator.step

Purpose Perform DOA estimation

Syntax ANG = step(H,X)

Description ANG = step(H,X) estimates the DOAs from X using the DOA estimator,
H. X is a matrix whose columns correspond to channels. ANG is a row
vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.ESPRITEstimator('SensorArray',ha,...

'OperatingFrequency',fc);
doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60])

1-390

phased.FMCWWaveform

Purpose FMCW Waveform

Description The FMCWWaveform object creates an FMCW (frequency modulated
continuous wave) waveform.

To obtain waveform samples:

1 Define and set up your FMCW waveform. See “Construction” on
page 1-391.

2 Call step to generate the FMCW waveform samples according to the
properties of phased.FMCWWaveform. The behavior of step is specific
to each object in the toolbox.

Construction H = phased.FMCWWaveform creates an FMCW waveform System object,
H. The object generates samples of an FMCW waveform.

H = phased.FMCWWaveform(Name,Value) creates an FMCW
waveform object, H, with additional options specified by one or more
Name,Value pair arguments. Name is a property name, and Value is
the corresponding value. Name must appear inside single quotes ('').
You can specify several name-value pair arguments in any order as
Name1,Value1, ,NameN,ValueN.

Properties SampleRate

Sample rate

Specify the same rate, in hertz, as a positive scalar. The default
value of this property corresponds to 1 MHz.

The quantity (SampleRate .* SweepTime) is a scalar or vector
that must contain only integers.

Default: 1e6

SweepTime

Duration of each linear FM sweep

1-391

phased.FMCWWaveform

Specify the duration of the upsweep or downsweep, in seconds,
as a row vector of positive, real numbers. The default value
corresponds to 100 μs.

If SweepDirection is 'Triangle', the sweep time is half the
sweep period because each period consists of an upsweep and a
downsweep. If SweepDirection is 'Up' or 'Down', the sweep time
equals the sweep period.

The quantity (SampleRate .* SweepTime) is a scalar or vector
that must contain only integers.

To implement a varying sweep time, specify SweepTime as a
nonscalar row vector. The waveform uses successive entries of the
vector as the sweep time for successive periods of the waveform.
If the last element of the vector is reached, the process continues
cyclically with the first entry of the vector.

If SweepTime and SweepBandwidth are both nonscalar, they must
have the same length.

Default: 1e-4

SweepBandwidth

FM sweep bandwidth

Specify the bandwidth of the linear FM sweeping, in hertz,
as a row vector of positive, real numbers. The default value
corresponds to 100 kHz.

To implement a varying bandwidth, specify SweepBandwidth as
a nonscalar row vector. The waveform uses successive entries
of the vector as the sweep bandwidth for successive periods of
the waveform. If the last element of the SweepBandwidth vector
is reached, the process continues cyclically with the first entry
of the vector.

If SweepTime and SweepBandwidth are both nonscalar, they must
have the same length.

1-392

phased.FMCWWaveform

Default: 1e5

SweepDirection

FM sweep direction

Specify the direction of the linear FM sweep as one of 'Up' |
'Down' | 'Triangle'.

Default: 'Up'

SweepInterval

Location of FM sweep interval

If you set this property value to 'Positive', the waveform sweeps
in the interval between 0 and B, where B is the SweepBandwidth
property value. If you set this property value to 'Symmetric', the
waveform sweeps in the interval between –B/2 and B/2.

Default: 'Positive'

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Sweeps'
or 'Samples'. When you set the OutputFormat property to
'Sweeps', the output of the step method is in the form of
multiple sweeps. In this case, the number of sweeps is the value
of the NumSweeps property. If the SweepDirection property is
'Triangle', each sweep is half a period.

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property.

Default: 'Sweeps'

1-393

phased.FMCWWaveform

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method
as a positive integer. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

NumSweeps

Number of sweeps in output

Specify the number of sweeps in the output of the step method
as a positive integer. This property applies only when you set the
OutputFormat property to 'Sweeps'.

Default: 1

Methods clone Create FMCW waveform object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plot Plot FMCW waveform

release Allow property value and input
characteristics changes

reset Reset states of FMCW waveform
object

step Samples of FMCW waveform

1-394

phased.FMCWWaveform

Definitions Triangle Sweep

In each period of a triangle sweep, the waveform sweeps up with a slope
of B/T and then down with a slope of –B/T. B is the sweep bandwidth,
and T is the sweep time. The sweep period is 2T.

Frequency

B

TimeT T

Upsweep

In each period of an upsweep, the waveform sweeps with a slope of B/T.
B is the sweep bandwidth, and T is the sweep time.

Frequency

B

TimeT

Downsweep

In each period of a downsweep, the waveform sweeps with a slope of
–B/T. B is the sweep bandwidth, and T is the sweep time.

Frequency

B

TimeT

1-395

phased.FMCWWaveform

Examples FMCW Waveform Plot

Create and plot an upsweep FMCW waveform.

hw = phased.FMCWWaveform('SweepBandwidth',1e5,...
'OutputFormat','Sweeps','NumSweeps',2);

plot(hw);

1-396

phased.FMCWWaveform

Spectrogram of Triangle Sweep FMCW Waveform

Generate samples of a triangle sweep FMCWWaveform. Then, examine
the sweep using a spectrogram.

hw = phased.FMCWWaveform('SweepBandwidth',1e7,...
'SampleRate',2e7,'SweepDirection','Triangle',...
'NumSweeps',2);

x = step(hw);
spectrogram(x,32,16,32,hw.SampleRate,'yaxis');

1-397

phased.FMCWWaveform

References [1] Issakov, Vadim. Microwave Circuits for 24 GHz Automotive Radar
in Silicon-based Technologies. Berlin: Springer, 2010.

[2] Skolnik, M.I. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

See Also range2time | time2range | range2bw | phased.LinearFMWaveform

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

1-398

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

phased.FMCWWaveform.clone

Purpose Create FMCW waveform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-399

phased.FMCWWaveform.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-400

phased.FMCWWaveform.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-401

phased.FMCWWaveform.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the FMCWWaveform
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-402

phased.FMCWWaveform.plot

Purpose Plot FMCW waveform

Syntax plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot(___)

Description plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options
specified by one or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line
style, or marker options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input
Arguments

Hwav

Waveform object. This variable must be a scalar that represents a
single waveform object.

LineSpec

String that specifies the same line color, style, or marker options
as are available in the MATLAB plot function. If you specify a
PlotType value of 'complex', then LineSpec applies to both the
real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’PlotType’

1-403

phased.FMCWWaveform.plot

Specifies whether the function plots the real part, imaginary part,
or both parts of the waveform. Valid values are 'real', 'imag',
and 'complex'.

Default: 'real'

’SweepIdx’

Index of the sweep to plot. This value must be a positive integer
scalar.

Default: 1

Output
Arguments

h

Handle to the line or lines in the figure. For a PlotType value of
'complex', h is a column vector. The first and second elements of
this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples FMCW Waveform Plot

Create and plot an upsweep FMCW waveform.

hw = phased.FMCWWaveform('SweepBandwidth',1e5,...
'OutputFormat','Sweeps','NumSweeps',2);

plot(hw);

1-404

phased.FMCWWaveform.plot

1-405

phased.FMCWWaveform.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-406

phased.FMCWWaveform.reset

Purpose Reset states of FMCW waveform object

Syntax reset(H)

Description reset(H) resets the states of the FMCWWaveform object, H. Afterward,
the next call to step restarts the sweep of the waveform.

1-407

phased.FMCWWaveform.step

Purpose Samples of FMCW waveform

Syntax Y = step(H)

Description Y = step(H) returns samples of the FMCW waveform in a column
vector, Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

FMCW waveform object.

Output
Arguments

Y

Column vector containing the waveform samples.

If H.OutputFormat is 'Samples', Y consists of H.NumSamples
samples.

If H.OutputFormat is 'Sweeps', Y consists of H.NumSweeps
sweeps. Also, if H.SweepDirection is 'Triangle', each sweep is
half a period.

Examples Spectrogram of Triangle Sweep FMCW Waveform

Generate samples of a triangle sweep FMCWWaveform. Then, examine
the sweep using a spectrogram.

hw = phased.FMCWWaveform('SweepBandwidth',1e7,...
'SampleRate',2e7,'SweepDirection','Triangle',...

1-408

phased.FMCWWaveform.step

'NumSweeps',2);
x = step(hw);
spectrogram(x,32,16,32,hw.SampleRate,'yaxis');

1-409

phased.FreeSpace

Purpose Free space environment

Description The FreeSpace object models a free space environment.

To compute the propagated signal in free space:

1 Define and set up your free space environment. See “Construction”
on page 1-410.

2 Call step to propagate the signal through a free space environment
according to the properties of phased.FreeSpace. The behavior of
step is specific to each object in the toolbox.

Construction H = phased.FreeSpace creates a free space environment System
object, H. The object simulates narrowband signal propagation in free
space, by applying range-dependent time delay, gain and phase shift
to the input signal.

H = phased.FreeSpace(Name,Value) creates a free space environment
object, H, with each specified property Name set to the specified Value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties PropagationSpeed

Signal propagation speed

Specify the wave propagation speed (in meters per second) in free
space as a scalar.

Default: Speed of light

OperatingFrequency

Signal carrier frequency

A scalar containing the carrier frequency in hertz of the
narrowband signal. The default value of this property corresponds
to 300 MHz.

1-410

phased.FreeSpace

Default: 3e8

TwoWayPropagation

Perform two-way propagation

Set this property to true to perform round-trip propagation
between the origin and destination that you specify in the
step command. Set this property to false to perform one-way
propagation from the origin to the destination.

Default: false

SampleRate

Sample rate

A scalar containing the sample rate (in hertz). The algorithm uses
this value to determine the propagation delay in samples. The
default value of this property corresponds to 1 MHz.

Default: 1e6

Methods clone Create free space object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

1-411

phased.FreeSpace

reset Reset internal states of
propagation channel

step Propagate signal from one
location to another

Examples Signal Propagation from Stationary Radar to Stationary
Target

Calculate the result of propagating a signal in a free space environment
from a radar at (1000, 0, 0) to a target at (300, 200, 50). Assume both
the radar and the target are stationary.

henv = phased.FreeSpace('SampleRate',8e3);
y = step(henv,ones(10,1),[1000; 0; 0],[300; 200; 50],...

[0;0;0],[0;0;0]);

Signal Propagation from Moving Radar to Moving Target

Calculate the result of propagating a signal in a free space environment
from a radar at (1000, 0, 0) to a target at (300, 200, 50). Assume the
radar moves at 10 m/s in the direction of the x-axis, while the target
moves at 15 m/s in the direction of the y-axis.

henv = phased.FreeSpace('SampleRate',8e3);
origin_pos = [1000; 0; 0];
dest_pos = [300; 200; 50];
origin_vel = [10; 0; 0];
dest_vel = [0; 15; 0];
y = step(henv,ones(10,1),origin_pos,dest_pos,...

origin_vel,dest_vel);

Algorithms When the origin and destination are stationary relative to each other,
the output Y of step can be written as Y(t)=x(t–tau)/L. In this case, tau
is the delay and L is the propagation loss. The delay tau is R/c, where
R is the propagation distance and c is the propagation speed. The free
space path loss is given by

1-412

phased.FreeSpace

L
R


()4 2

2




where λ is the signal wavelength.

When there is relative motion between the origin and destination, the
processing also introduces a frequency shift. This shift corresponds to
the Doppler shift between the origin and destination. The frequency
shift is v/λ for one-way propagation and 2v/λ for two-way propagation.
In this case, v is the relative speed from the origin to the destination.

For further details, see [2].

References [1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also fspl | phased.RadarTarget

1-413

phased.FreeSpace.clone

Purpose Create free space object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-414

phased.FreeSpace.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-415

phased.FreeSpace.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-416

phased.FreeSpace.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the FreeSpace
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-417

phased.FreeSpace.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-418

phased.FreeSpace.reset

Purpose Reset internal states of propagation channel

Syntax reset(H)

Description reset(H) resets the states of the FreeSpace object, H.

1-419

phased.FreeSpace.step

Purpose Propagate signal from one location to another

Syntax Y = step(H,X,origin_pos,dest_pos,origin_vel,dest_vel)

Description Y = step(H,X,origin_pos,dest_pos,origin_vel,dest_vel) returns
the resulting signal, Y, when the narrowband signal X propagates in free
space from origin_pos to dest_pos. The velocity of the signal origin
is origin_vel and the velocity of the signal destination is dest_vel.
Consider FreeSpace as a point-to-point propagation channel. For
example, you can use it to model the propagation of a signal between a
radar and a target.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Free space object.

X

Narrowband signal.

The form of X depends upon whether polarization is simulated or
not. If polarization is not simulated, X is a column vector.

If polarization is simulated X is a MATLAB struct containing two
alternate ways of representing the polarized signal:

• X.X, X.Y, and X.Z representing the x, y, and z components of
the polarized signal.

1-420

phased.FreeSpace.step

• X.H and X.V representing the horizontal and vertical
components of the polarized signal.

origin_pos

Starting location of signal, specified as a 3-by-1 column vector in
the form [x; y; z] (in meters).

dest_pos

Ending location of signal, specified as a 3-by-1 column vector in
the form [x; y; z] (in meters).

origin_vel

Velocity of signal origin, specified as a 3-by-1 column vector in the
form [Vx; Vy; Vz] (in meters/second).

dest_vel

Velocity of the signal destination, specified as a 3-by-1 column
vector in the form [Vx; Vy; Vz] (in meters/second).

Output
Arguments

Y

Propagated signal, returned as a column vector or MATLAB
struct, depending upon the form of the input argument X. If X is
a column vector, Y is also a column vector with same dimensions.
If X is a struct, Y is also a struct with the same fields. Each field
in Y contains the resulting signal of the corresponding field in X.
The output Y is the signal arriving at the propagation destination
within the current time frame, which is the time occupied by
the current input. Whenever it takes longer than the current
time frame for the signal to propagate from the origin to the
destination, the output contains no contribution from the input of
the current time frame.

1-421

phased.FreeSpace.step

Examples Signal Propagation from Stationary Radar to Stationary
Target

Calculate the result of propagating a signal in a free space environment
from a radar at (1000, 0, 0) to a target at (300, 200, 50). Assume both
the radar and the target are stationary.

henv = phased.FreeSpace('SampleRate',8e3);
y = step(henv,ones(10,1),[1000; 0; 0],[300; 200; 50],...

[0;0;0],[0;0;0]);

Signal Propagation from Moving Radar to Moving Target

Calculate the result of propagating a signal in a free space environment
from a radar at (1000, 0, 0) to a target at (300, 200, 50). Assume the
radar moves at 10 m/s in the direction of the x-axis, while the target
moves at 15 m/s in the direction of the y-axis.

henv = phased.FreeSpace('SampleRate',8e3);
origin_pos = [1000; 0; 0];
dest_pos = [300; 200; 50];
origin_vel = [10; 0; 0];
dest_vel = [0; 15; 0];
y = step(henv,ones(10,1),origin_pos,dest_pos,...

origin_vel,dest_vel);

Algorithms When the origin and destination are stationary relative to each other,
the output Y of step can be written as Y(t)=x(t–tau)/L. In this case, tau
is the delay and L is the propagation loss. The delay tau is R/c, where
R is the propagation distance and c is the propagation speed. The free
space path loss is given by

L
R


()4 2

2




where λ is the signal wavelength.

1-422

phased.FreeSpace.step

When there is relative motion between the origin and destination, the
processing also introduces a frequency shift. This shift corresponds to
the Doppler shift between the origin and destination. The frequency
shift is v/λ for one-way propagation and 2v/λ for two-way propagation.
In this case, v is the relative speed from the origin to the destination.

For further details, see [2].

References [1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

1-423

phased.FrostBeamformer

Purpose Frost beamformer

Description The FrostBeamformer object implements a Frost beamformer.

To compute the beamformed signal:

1 Define and set up your Frost beamformer. See “Construction” on
page 1-424.

2 Call step to perform the beamforming operation according to the
properties of phased.FrostBeamformer. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.FrostBeamformer creates a Frost beamformer System
object, H. The object performs Frost beamforming on the received signal.

H = phased.FrostBeamformer(Name,Value) creates a Frost
beamformer object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

1-424

phased.FrostBeamformer

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar.

Default: 1e6

FilterLength

FIR filter length

Specify the length of FIR filter behind each sensor element in
the array as a positive integer.

Default: 2

DiagonalLoadingFactor

Diagonal loading factor

Specify the diagonal loading factor as a positive scalar. Diagonal
loading is a technique used to achieve robust beamforming
performance, especially when the sample support is small. This
property is tunable.

Default: 0

TrainingInputPort

Add input to specify training data

To specify additional training data, set this property to true and
use the corresponding input argument when you invoke step.
To use the input signal as the training data, set this property to
false.

Default: false

DirectionSource

1-425

phased.FrostBeamformer

Source of beamforming direction

Specify whether the beamforming direction comes from the
Direction property of this object or from an input argument in
step. Values of this property are:

'Property' The Direction property of this object
specifies the beamforming direction.

'Input port' An input argument in each invocation
of step specifies the beamforming
direction.

Default: 'Property'

Direction

Beamforming direction

Specify the beamforming direction of the beamformer as a column
vector of length 2. The direction is specified in the format of
[AzimuthAngle; ElevationAngle] (in degrees). The azimuth
angle should be between –180 and 180. The elevation angle
should be between –90 and 90. This property applies when you
set the DirectionSource property to 'Property'.

Default: [0;0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

1-426

phased.FrostBeamformer

Methods clone Create Frost beamformer object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform Frost beamforming

Examples Apply a Frost beamformer to an 11-element array. The incident angle
of the signal is –50 degrees in azimuth and 30 degrees in elevation.

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
ha.Element.FrequencyRange = [20 20000];
fs = 8e3; t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,...
'ModulatedInput',false);

incidentAngle = [-50; 30];
x = step(hc,x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x+noise;

% Beamforming
hbf = phased.FrostBeamformer('SensorArray',ha,...

'PropagationSpeed',c,'SampleRate',fs,...
'Direction',incidentAngle,'FilterLength',5);

1-427

phased.FrostBeamformer

y = step(hbf,rx);

% Plot
plot(t,rx(:,6),'r:',t,y);
xlabel('Time'); ylabel('Amplitude');
legend('Original','Beamformed');

Algorithms phased.FrostBeamformer uses a beamforming algorithm proposed
by Frost. It can be considered the time-domain counterpart of the

1-428

phased.FrostBeamformer

minimum variance distortionless response (MVDR) beamformer. The
algorithm does the following:

1 Steers the array to the beamforming direction.

2 Applies an FIR filter to the output of each sensor to achieve the
distortionless response constraint. The filter is specific to each sensor.

For further details, see [1].

References [1] Frost, O. “An Algorithm For Linearly Constrained Adaptive Array
Processing”, Proceedings of the IEEE. Vol. 60, Number 8, August, 1972,
pp. 926–935.

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.PhaseShiftBeamformer |
phased.SubbandPhaseShiftBeamformer |
phased.TimeDelayBeamformer | phased.TimeDelayLCMVBeamformer
| uv2azel | phitheta2azel

1-429

phased.FrostBeamformer.clone

Purpose Create Frost beamformer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-430

phased.FrostBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-431

phased.FrostBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-432

phased.FrostBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
FrostBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-433

phased.FrostBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-434

phased.FrostBeamformer.step

Purpose Perform Frost beamforming

Syntax Y = step(H,X)
Y = step(H,X,XT)
Y = step(H,X,ANG)
Y = step(H,X,XT,ANG)
[Y,W] = step(___)

Description Y = step(H,X) performs Frost beamforming on the input, X, and
returns the beamformed output in Y.

Y = step(H,X,XT) uses XT as the training samples to calculate the
beamforming weights. This syntax is available when you set the
TrainingInputPort property to true.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This
syntax is available when you set the DirectionSource property to
'Input port'.

Y = step(H,X,XT,ANG) combines all input arguments. This syntax is
available when you set the TrainingInputPort property to true and
set the DirectionSource property to 'Input port'.

[Y,W] = step(___) returns the beamforming weights, W. This syntax
is available when you set the WeightsOutputPort property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Beamformer object.

1-435

phased.FrostBeamformer.step

X

Input signal, specified as an M-by-N matrix. M must be larger
than the FIR filter length specified in the FilterLength property.
N is the number of elements in the sensor array.

XT

Training samples, specified as an M-by-N matrix. M and N are
the same as the dimensions of X.

ANG

Beamforming directions, specified as a length-2 column vector.
The vector has the form [AzimuthAngle; ElevationAngle], in
degrees. The azimuth angle must be between –180 and 180
degrees, and the elevation angle must be between –90 and 90
degrees.

Output
Arguments

Y

Beamformed output. Y is a column vector of length M, where M is
the number of rows in X.

W

Beamforming weights. W is a column vector of
length L, where L is the degrees of freedom of the
beamformer. For a Frost beamformer, H, L is given by
getNumElements(H.SensorArray)*H.FilterLength.

Examples Apply a Frost beamformer to an 11-element array. The incident angle
of the signal is –50 degrees in azimuth and 30 degrees in elevation.

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
ha.Element.FrequencyRange = [20 20000];
fs = 8e3; t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

1-436

phased.FrostBeamformer.step

'PropagationSpeed',c,'SampleRate',fs,...
'ModulatedInput',false);

incidentAngle = [-50; 30];
x = step(hc,x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x+noise;

% Beamforming
hbf = phased.FrostBeamformer('SensorArray',ha,...

'PropagationSpeed',c,'SampleRate',fs,...
'Direction',incidentAngle,'FilterLength',5);

y = step(hbf,rx);

Algorithms phased.FrostBeamformer uses a beamforming algorithm proposed
by Frost. It can be considered the time-domain counterpart of the
minimum variance distortionless response (MVDR) beamformer. The
algorithm does the following:

1 Steers the array to the beamforming direction.

2 Applies an FIR filter to the output of each sensor to achieve the
distortionless response constraint. The filter is specific to each sensor.

For further details, see [1].

References [1] Frost, O. “An Algorithm For Linearly Constrained Adaptive Array
Processing”, Proceedings of the IEEE. Vol. 60, Number 8, August, 1972,
pp. 926–935.

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | phitheta2azel

1-437

phased.gpu.ConstantGammaClutter

Purpose Constant gamma clutter simulation on GPU

Description The phased.gpu.ConstantGammaClutter object simulates clutter,
performing the computations on a GPU.

Note To use this object, you must install a Parallel Computing
Toolbox license and have access to an appropriate GPU. For more
about GPUs, see “GPU Computing” in the Parallel Computing Toolbox
documentation.

To compute the clutter return:

1 Define and set up your clutter simulator. See “Construction” on
page 1-439.

2 Call step to simulate the clutter return for your system according to
the properties of phased.gpu.ConstantGammaClutter. The behavior
of step is specific to each object in the toolbox.

The clutter simulation that ConstantGammaClutter provides is based
on these assumptions:

• The radar system is monostatic.

• The propagation is in free space.

• The terrain is homogeneous.

• The clutter patch is stationary during the coherence time. Coherence
time indicates how frequently the software changes the set of random
numbers in the clutter simulation.

• The signal is narrowband. Thus, the spatial response can be
approximated by a phase shift. Similarly, the Doppler shift can be
approximated by a phase shift.

• The radar system maintains a constant height during simulation.

1-438

phased.gpu.ConstantGammaClutter

• The radar system maintains a constant speed during simulation.

Construction H = phased.gpu.ConstantGammaClutter creates a constant gamma
clutter simulation System object, H. This object simulates the clutter
return of a monostatic radar system using the constant gamma model.

H = phased.gpu.ConstantGammaClutter(Name,Value) creates a
constant gamma clutter simulation object, H, with additional options
specified by one or more Name,Value pair arguments. Name is a
property name, and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1, ,NameN,ValueN.

Properties Sensor

Handle of sensor

Specify the sensor as an antenna element object or as an array
object whose Element property value is an antenna element
object. If the sensor is an array, it can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

1-439

phased.gpu.ConstantGammaClutter

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default
value corresponds to 1 MHz.

Default: 1e6

PRF

Pulse repetition frequency

Specify the pulse repetition frequency in hertz as a positive scalar
or a row vector. The default value of this property corresponds to
10 kHz. When PRF is a vector, it represents a staggered PRF. In
this case, the output pulses use elements in the vector as their
PRFs, one after another, in a cycle.

Default: 1e4

Gamma

Terrain gamma value

Specify the  value used in the constant  clutter model, as a
scalar in decibels. The  value depends on both terrain type and
the operating frequency.

Default: 0

EarthModel

Earth model

Specify the earth model used in clutter simulation as one of |
'Flat' | 'Curved' |. When you set this property to 'Flat', the
earth is assumed to be a flat plane. When you set this property to
'Curved', the earth is assumed to be a sphere.

Default: 'Flat'

1-440

phased.gpu.ConstantGammaClutter

PlatformHeight

Radar platform height from surface

Specify the radar platform height (in meters) measured upward
from the surface as a nonnegative scalar.

Default: 300

PlatformSpeed

Radar platform speed

Specify the radar platform’s speed as a nonnegative scalar in
meters per second.

Default: 300

PlatformDirection

Direction of radar platform motion

Specify the direction of radar platform motion as a 2-by-1 vector
in the form [AzimuthAngle; ElevationAngle] in degrees. The
default value of this property indicates that the platform moves
perpendicular to the radar antenna array’s broadside.

Both azimuth and elevation angle are measured in the local
coordinate system of the radar antenna or antenna array.
Azimuth angle must be between –180 and 180 degrees. Elevation
angle must be between –90 and 90 degrees.

Default: [90;0]

BroadsideDepressionAngle

Depression angle of array broadside

Specify the depression angle in degrees of the broadside of the
radar antenna array. This value is a scalar. The broadside is

1-441

phased.gpu.ConstantGammaClutter

defined as zero degrees azimuth and zero degrees elevation. The
depression angle is measured downward from horizontal.

Default: 0

MaximumRange

Maximum range for clutter simulation

Specify the maximum range in meters for the clutter simulation
as a positive scalar. The maximum range must be greater than
the value specified in the PlatformHeight property.

Default: 5000

AzimuthCoverage

Azimuth coverage for clutter simulation

Specify the azimuth coverage in degrees as a positive scalar. The
clutter simulation covers a region having the specified azimuth
span, symmetric to 0 degrees azimuth. Typically, all clutter
patches have their azimuth centers within the region, but the
PatchAzimuthWidth value can cause some patches to extend
beyond the region.

Default: 60

PatchAzimuthWidth

Azimuth span of each clutter patch

Specify the azimuth span of each clutter patch in degrees as a
positive scalar.

Default: 1

TransmitSignalInputPort

Add input to specify transmit signal

1-442

phased.gpu.ConstantGammaClutter

Set this property to true to add input to specify the transmit
signal in the step syntax. Set this property to false omit the
transmit signal in the step syntax. The false option is less
computationally expensive; to use this option, you must also
specify the TransmitERP property.

Default: false

TransmitERP

Effective transmitted power

Specify the transmitted effective radiated power (ERP) of the
radar system in watts as a positive scalar. This property applies
only when you set the TransmitSignalInputPort property to
false.

Default: 5000

CoherenceTime

Clutter coherence time

Specify the coherence time in seconds for the clutter simulation
as a positive scalar. After the coherence time elapses, the step
method updates the random numbers it uses for the clutter
simulation at the next pulse. A value of inf means the random
numbers are never updated.

Default: inf

OutputFormat

Output signal format

Specify the format of the output signal as one of | 'Pulses'
| 'Samples' |. When you set the OutputFormat property to
'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the
NumPulses property.

1-443

phased.gpu.ConstantGammaClutter

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property. In staggered PRF applications, you might find the
'Samples' option more convenient because the step output
always has the same matrix size.

Default: 'Pulses'

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as
a positive integer. This property applies only when you set the
OutputFormat property to 'Pulses'.

Default: 1

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method
as a positive integer. Typically, you use the number of samples
in one pulse. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this
property are:

1-444

phased.gpu.ConstantGammaClutter

'Auto' Random numbers come from the global GPU random
number stream.

'Auto' is appropriate in a variety of situations. In
particular, if you want to use a generator algorithm other
than mrg32k3a, set SeedSource to 'Auto'. Then, configure
the global GPU random number stream to use the generator
of your choice. You can configure the global GPU random
number stream using parallel.gpu.RandStream and
parallel.gpu.RandStream.setGlobalStream.

'Property' Random numbers come from a private stream of random
numbers. The stream uses the mrg32k3a generator
algorithm, with a seed specified in the Seed property of this
object.

If you do not want clutter computations to affect the
global GPU random number stream, set SeedSource to
'Property'.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232–1. This property applies when you set
the SeedSource property to 'Property'.

Default: 0

Methods clone Create GPU constant gamma
clutter simulation object with
same property values

getNumInputs Number of expected inputs to
step method

1-445

phased.gpu.ConstantGammaClutter

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

reset Reset random numbers and time
count for clutter simulation

step Simulate clutter using constant
gamma model

Examples Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB.
The effective transmitted power of the radar system is 5 kw.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the GPU clutter simulation object. The configuration assumes
the earth is flat. The maximum clutter range of interest is 5 km, and
the maximum azimuth coverage is +/– 60 degrees.

1-446

phased.gpu.ConstantGammaClutter

Rmax = 5000; Azcov = 120;
tergamma = 0; tpower = 5000;
hclutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitERP',tpower,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf; Npulse = 10;
csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

1-447

phased.gpu.ConstantGammaClutter

The results do not exactly match those achieved
by using phased.ConstantGammaClutter instead of
phased.gpu.ConstantGammaClutter. This discrepancy
occurs because of differences between CPU and GPU computations.

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB.
The step syntax includes the transmit signal of the radar system as an

1-448

phased.gpu.ConstantGammaClutter

input argument. In this case, you do not record the effective transmitted
power of the signal in a property.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the GPU clutter simulation object and configure it to take a
transmit signal as an input argument to step. The configuration
assumes the earth is flat. The maximum clutter range of interest is 5
km, and the maximum azimuth coverage is +/– 60 degrees.

Rmax = 5000; Azcov = 120;
tergamma = 0;
hclutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitSignalInputPort',true,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov);

Simulate the clutter return for 10 pulses. At each step, pass the
transmit signal as an input argument. The software automatically
computes the effective transmitted power of the signal. The transmit
signal is a rectangular waveform with a pulse width of 2 µs.

1-449

phased.gpu.ConstantGammaClutter

tpower = 5000;
pw = 2e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf; Npulse = 10;
csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

1-450

phased.gpu.ConstantGammaClutter

The results do not exactly match those achieved
by using phased.ConstantGammaClutter instead of
phased.gpu.ConstantGammaClutter. This discrepancy
occurs because of differences between CPU and GPU computations.

Random Number Comparison Between GPU and CPU

In most cases, it does not matter that the GPU and CPU use different
random numbers. Sometimes, you may need to reproduce the same
stream on both GPU and CPU. In such cases, you can set up the two

1-451

phased.gpu.ConstantGammaClutter

global streams so they produce identical random numbers. Both GPU
and CPU support the combined multiple recursive generator (mrg32k3a)
with the NormalTransform parameter set to 'Inversion'.

Define a seed value to use for the GPU stream and the CPU stream.

seed = 7151;

Create a CPU random number stream that uses the combined multiple
recursive generator and the chosen seed value. Then, use this stream
as the global stream for random number generation on the CPU.

stream_cpu = RandStream('CombRecursive','Seed',seed,...
'NormalTransform','Inversion');

RandStream.setGlobalStream(stream_cpu);

Create a GPU random number stream that uses the combined multiple
recursive generator and the same seed value. Then, use this stream as
the global stream for random number generation on the GPU.

stream_gpu = parallel.gpu.RandStream('CombRecursive','Seed',seed);
parallel.gpu.RandStream.setGlobalStream(stream_gpu);

Generate clutter on both the CPU and the GPU, using the global stream
on each platform.

h_cpu = phased.ConstantGammaClutter('SeedSource','Auto');
h_gpu = phased.gpu.ConstantGammaClutter('SeedSource','Auto');

y_cpu = step(h_cpu);
y_gpu = step(h_gpu);

Check that the element-wise differences between the CPU and GPU
results are negligible.

maxdiff = max(max(abs(y_cpu - y_gpu)))
eps

maxdiff =

1-452

phased.gpu.ConstantGammaClutter

2.9092e-18

ans =

2.2204e-16

References [1] Barton, David. “Land Clutter Models for Radar Design and
Analysis,” Proceedings of the IEEE. Vol. 73, Number 2, February, 1985,
pp. 198–204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar
Design Principles, 2nd Ed. Mendham, NJ: SciTech Publishing, 1999.

[4] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also phased.BarrageJammer | phased.ConstantGammaClutter |
surfacegamma | uv2azel | phitheta2azel

Related
Examples

• Acceleration of Clutter Simulation Using GPU and Code Generation
• Ground Clutter Mitigation with Moving Target Indication (MTI)
Radar

Concepts • “Clutter Modeling”
• “GPU Computing”

1-453

../examples/acceleration-of-clutter-simulation-using-gpu-and-code-generation.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

phased.gpu.ConstantGammaClutter.clone

Purpose Create GPU constant gamma clutter simulation object with same
property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-454

phased.gpu.ConstantGammaClutter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-455

phased.gpu.ConstantGammaClutter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-456

phased.gpu.ConstantGammaClutter.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ConstantGammaClutter System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-457

phased.gpu.ConstantGammaClutter.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-458

phased.gpu.ConstantGammaClutter.reset

Purpose Reset random numbers and time count for clutter simulation

Syntax reset(H)

Description reset(H) resets the states of the ConstantGammaClutter object, H. This
method resets the random number generator state if the SeedSource
property is set to 'Property'. This method resets the elapsed coherence
time. Also, if the PRF property is a vector, the next call to step uses
the first PRF value in the vector.

1-459

phased.gpu.ConstantGammaClutter.step

Purpose Simulate clutter using constant gamma model

Syntax Y = step(H)
Y = step(H,X)

Description Y = step(H) computes the collected clutter return at each sensor. This
syntax is available when you set the TransmitSignalInputPort
property to false.

Y = step(H,X) specifies the transmit signal in X. Transmit signal
refers to the output of the transmitter while it is on during a given pulse.
This syntax is available when you set the TransmitSignalInputPort
property to true.

Input
Arguments

H

Constant gamma clutter object.

X

Transmit signal, specified as a column vector of data type double.
The System object handles data transfer between the CPU and
GPU.

Output
Arguments

Y

Collected clutter return at each sensor. The data types of X and
Y are the same. Y has dimensions N-by-M matrix. M is the
number of subarrays in the radar system if H.Sensor contains
subarrays, or the number of sensors, otherwise. When you set
the OutputFormat property to 'Samples', N is specified in the
NumSamples property. When you set the OutputFormat property
to 'Pulses', N is the total number of samples in the next L
pulses. In this case, L is specified in the NumPulses property.

Tips The clutter simulation that ConstantGammaClutter provides is based
on these assumptions:

• The radar system is monostatic.

1-460

phased.gpu.ConstantGammaClutter.step

• The propagation is in free space.

• The terrain is homogeneous.

• The clutter patch is stationary during the coherence time. Coherence
time indicates how frequently the software changes the set of random
numbers in the clutter simulation.

• The signal is narrowband. Thus, the spatial response can be
approximated by a phase shift. Similarly, the Doppler shift can be
approximated by a phase shift.

• The radar system maintains a constant height during simulation.

• The radar system maintains a constant speed during simulation.

Examples Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB.
The effective transmitted power of the radar system is 5 kw.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the GPU clutter simulation object. The configuration assumes
the earth is flat. The maximum clutter range of interest is 5 km, and
the maximum azimuth coverage is +/– 60 degrees.

1-461

phased.gpu.ConstantGammaClutter.step

Rmax = 5000; Azcov = 120;
tergamma = 0; tpower = 5000;
hclutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitERP',tpower,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf; Npulse = 10;
csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

1-462

phased.gpu.ConstantGammaClutter.step

The results do not exactly match those achieved
by using phased.ConstantGammaClutter instead of
phased.gpu.ConstantGammaClutter. This discrepancy
occurs because of differences between CPU and GPU computations.

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB.
The step syntax includes the transmit signal of the radar system as an

1-463

phased.gpu.ConstantGammaClutter.step

input argument. In this case, you do not record the effective transmitted
power of the signal in a property.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the GPU clutter simulation object and configure it to take a
transmit signal as an input argument to step. The configuration
assumes the earth is flat. The maximum clutter range of interest is 5
km, and the maximum azimuth coverage is +/– 60 degrees.

Rmax = 5000; Azcov = 120;
tergamma = 0;
hclutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitSignalInputPort',true,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov);

Simulate the clutter return for 10 pulses. At each step, pass the
transmit signal as an input argument. The software automatically
computes the effective transmitted power of the signal. The transmit
signal is a rectangular waveform with a pulse width of 2 µs.

1-464

phased.gpu.ConstantGammaClutter.step

tpower = 5000;
pw = 2e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf; Npulse = 10;
csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

1-465

phased.gpu.ConstantGammaClutter.step

The results do not exactly match those achieved
by using phased.ConstantGammaClutter instead of
phased.gpu.ConstantGammaClutter. This discrepancy
occurs because of differences between CPU and GPU computations.

Related
Examples

• Acceleration of Clutter Simulation Using GPU and Code Generation
• Ground Clutter Mitigation with Moving Target Indication (MTI)
Radar

1-466

../examples/acceleration-of-clutter-simulation-using-gpu-and-code-generation.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

phased.gpu.ConstantGammaClutter.step

Concepts • “Clutter Modeling”
• “GPU Computing”

1-467

phased.HeterogeneousConformalArray

Purpose Heterogeneous conformal array

Description The HeterogeneousConformalArray object constructs a conformal
array from a heterogeneous set of antenna elements. A heterogeneous
array is an array in which the antenna or microphone elements may be
of different kinds or have different properties. An example would be an
array of elements each having different antenna patterns. A conformal
array can have elements in any position pointing in any direction.

To compute the response for each element in the array for specified
directions:

1 Define and set up your conformal array. See “Construction” on page
1-468.

2 Call step to compute the response according to the properties of
phased.HeterogeneousConformalArray. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.HeterogeneousConformalArray creates a heterogeneous
conformal array System object, H. This object models a heterogeneous
conformal array formed with sensor elements whose pattern may vary
from element to element.

H = phased.HeterogeneousConformalArray(Name,Value) creates
object, H, with each specified property Name set to the specified Value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties ElementSet

Set of elements used in the array

Specify the set of different elements used in the sensor array as a
row MATLAB cell array. Each member of the cell array contains
an element object in the phased package. Elements specified
in the ElementSet property must be either all antennas or all
microphones. In addition, all specified antenna elements should

1-468

phased.HeterogeneousConformalArray

have same polarization capability. Specify the element of the
sensor array as a handle. The element must be an element object
in the phased package.

Default: One cell containing one isotropic antenna element

ElementIndices

Elements location assignment

This property specifies the mapping of elements in the array.
The property assigns elements to their locations in the array
using the indices into the ElementSet property. The value of
ElementIndices must be an length-N row vector. In this vector,
N represents the number of elements in the array. The values in
the vector specified by ElementIndices should be less than or
equal to the number of entries in the ElementSet property.

Default: [1 2 2 1]

ElementPosition

Element positions

ElementPosition specifies the positions of the elements in
the conformal array. The value of the ElementPosition
property must be a 3-by-N matrix, where N indicates the
number of elements in the conformal array. Each column of
ElementPosition represents the position, in the form [x; y; z]
(in meters), of a single element in the array’s local coordinate
system. The local coordinate system has its origin at an arbitrary
point.

Default: [0; 0; 0]

ElementNormal

Element normal directions

1-469

phased.HeterogeneousConformalArray

ElementNormal specifies the normal directions of the elements
in the conformal array. Angle units are degrees. The value
assigned to ElementNormal must be either a 2-by-N matrix or a
2-by-1 column vector. The variable N indicates the number of
elements in the array. If the value of ElementNormal is a matrix,
each column specifies the normal direction of the corresponding
element in the form [azimuth;elevation] with respect to the
local coordinate system. The local coordinate system aligns the
positive x-axis with the direction normal to the conformal array. If
the value of ElementNormal is a 2-by-1 column vector, it specifies
the pointing direction of all elements in the array.

You can use the ElementPosition and ElementNormal properties
to represent any arrangement in which pairs of elements differ
by certain transformations. The transformations can combine
translation, azimuth rotation, and elevation rotation. However,
you cannot use transformations that require rotation about the
normal.

Default: [0; 0]

Taper

Element taper or weighting

Element tapering specified as a complex-valued scalar or a
complex-valued 1-by-N row vector. N is the number of elements
in the array as determined by the size of the ElementIndices
property. Tapers, also known as weights, are applied to each
sensor element in the sensor array and modify both the amplitude
and phase of the received data. If 'Taper' is a scalar, the same
weights are applied to each element. If 'Taper' is a vector, each
weight is applied to the corresponding sensor element.

Default: 1

1-470

phased.HeterogeneousConformalArray

Methods clone Create system object with
identical values

collectPlaneWave Simulate received plane waves

getElementPosition Positions of array elements

getNumElements Number of elements in array

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

getTaper Array element tapers

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotResponse Plot response pattern of array

release Allow property value and input
characteristics changes

step Output responses of array
elements

viewArray View array geometry

Examples Heterogeneous Uniform Circular Array (UCA)

Construct an 8-element heterogeneous uniform circular array (UCA).
Four of the elements have a cosine pattern with a power of 1.6. The
remaining four have a cosine pattern with a power of 1.5. Plot its
response as a function of elevation angle. Assume a 1 GHz operating
frequency. The wave propagation speed is the speed of light.

sElement1 = phased.CosineAntennaElement('CosinePower',1.6);
sElement2 = phased.CosineAntennaElement('CosinePower',1.5);
sArray = phased.HeterogeneousConformalArray(...

1-471

phased.HeterogeneousConformalArray

'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1 1 2 2 2 2]);

N = 8; azang = (0:N-1)*360/N-180;
sArray.ElementPosition = ...

[cosd(azang);sind(azang);zeros(1,N)];
sArray.ElementNormal = [azang;zeros(1,N)];
c = physconst('LightSpeed');
fc = 1e9;
plotResponse(sArray,fc,c,'RespCut','El','Format','Polar');

1-472

phased.HeterogeneousConformalArray

References [1] Josefsson, L. and P. Persson. Conformal Array Antenna Theory and
Design. Piscataway, NJ: IEEE Press, 2006.

1-473

phased.HeterogeneousConformalArray

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ReplicatedSubarray | phased.PartitionedArray |
phased.CosineAntennaElement | phased.CustomAntennaElement
| phased.IsotropicAntennaElement | phased.ULA | phased.URA
| phased.HeterogeneousULA | phased.HeterogeneousURA |
phased.ConformalArray | uv2azel | phitheta2azel

Related
Examples

• Phased Array Gallery

1-474

../examples/phased-array-gallery.html

phased.HeterogeneousConformalArray.clone

Purpose Create system object with identical values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-475

phased.HeterogeneousConformalArray.collectPlaneWave

Purpose Simulate received plane waves

Syntax Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description Y = collectPlaneWave(H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave(H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

Input
Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

1-476

phased.HeterogeneousConformalArray.collectPlaneWave

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output
Arguments

Y

Received signals. Y is an N-column matrix, where N is the number
of elements in the array H. Each column of Y is the received signal
at the corresponding array element, with all incoming signals
combined.

Examples Simulate the received signal at an 8-element uniform circular array

The signals arrive from 10° and 30° azimuth. Both signals have an
elevation angle of 0°. Assume the propagation speed is the speed of light.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
N = 8; azang = (0:N-1)*360/N-180;
sArray = phased.HeterogeneousConformalArray(...

'ElementPosition',...
[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal',[azang;zeros(1,N)],...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1 1 2 2 2 2]);

c = physconst('LightSpeed');
y = collectPlaneWave(sArray,randn(4,2),[10 30],c);
disp(y(:,1:2));

0.3237 + 0.4890i 0.6039 + 0.0301i
0.6786 - 0.7586i -0.5528 + 1.0947i
1.8804 + 0.6692i 1.2940 + 1.4305i

1-477

phased.HeterogeneousConformalArray.collectPlaneWave

2.4967 + 1.3510i 2.1896 + 1.6319i

Algorithms collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. The
method does not account for the response of individual elements in
the array.

For further details, see Van Trees [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | phitheta2azel

1-478

phased.HeterogeneousConformalArray.getElementPositio

Purpose Positions of array elements

Syntax POS = getElementPosition(H)
POS = getElementPosition(H,ELEIDX)

Description POS = getElementPosition(H) returns the element positions of the
HeterogeneousConformalArray System object, H. POS is an 3-by-N
matrix where N is the number of elements in H. Each column of POS
defines the position of an element in the local coordinate system, in
meters, in the form [x; y; z].

For details regarding the local coordinate system of
the conformal or heterogeneous conformal array, enter
phased.ConformalArray.coordinateSystemInfo.

POS = getElementPosition(H,ELEIDX) returns the positions of the
elements that are specified in the element index vector ELEIDX.

Examples Construct a default conformal array and obtain the element positions.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

N = 8; azang = (0:N-1)*360/N-180;
sArray = phased.HeterogeneousConformalArray(...

'ElementPosition',...
[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal',[azang;zeros(1,N)],...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1 1 2 2 2 2]);

pos = getElementPosition(sArray);
disp(pos(:,1:4));

-1.0000 -0.7071 0 0.7071
0 -0.7071 -1.0000 -0.7071

1-479

phased.HeterogeneousConformalArray.getElementPosition

0 0 0 0

1-480

phased.HeterogeneousConformalArray.getNumElements

Purpose Number of elements in array

Syntax N = getNumElements(H)

Description N = getNumElements(H) returns the number of elements, N, in the
conformal array object H.

Examples Construct a heterogeneous 8-element uniform circular array and show
that getNumElements returns 8.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

N = 8; azang = (0:N-1)*360/N-180;
sArray = phased.HeterogeneousConformalArray(...

'ElementPosition',...
[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal',[azang;zeros(1,N)],...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1 1 2 2 2 2]);

N = getNumElements(sArray)

N =

8

1-481

phased.HeterogeneousConformalArray.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-482

phased.HeterogeneousConformalArray.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-483

phased.HeterogeneousConformalArray.getTaper

Purpose Array element tapers

Syntax wts = getTaper(h)

Description wts = getTaper(h) returns the tapers applied to each element of a
conformal array, h. Tapers are often referred to as weights.

Input
Arguments

h - Conformal array
phased.HeterogeneousConformalArray System object

Conformal array specified as a
phased.HeterogeneousConformalArray System object.

Output
Arguments

wts - Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued
vector, where N is the number of elements in the array.

Examples Construct a 12-element, 2-ring tapered disk array where the outer ring
is more heavily tapered than the inner ring.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

elemAngles = ([0:5]*360/6);
elemPosInner = 0.5*[zeros(size(elemAngles));...

cosd(elemAngles); sind(elemAngles)];
elemPosOuter = [zeros(size(elemAngles));...

cosd(elemAngles); sind(elemAngles)];
elemNorms = repmat([0;0],1,12);
taper = [ones(size(elemAngles)),...

0.3*ones(size(elemAngles))];
sArray = phased.HeterogeneousConformalArray(...

1-484

phased.HeterogeneousConformalArray.getTaper

'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1 1 1 1 2 2 2 2 2 2],...
'ElementPosition',[elemPosInner,elemPosOuter],...
'ElementNormal',elemNorms,...
'Taper',taper);

w = getTaper(sArray)

List the taper values.

w =

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.3000
0.3000
0.3000
0.3000
0.3000
0.3000

Draw the array showing taper colors.

viewArray(sArray,'ShowTaper',true,'ShowIndex','all');

1-485

phased.HeterogeneousConformalArray.getTaper

1-486

phased.HeterogeneousConformalArray.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ConformalArray System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-487

phased.HeterogeneousConformalArray.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the array supports polarization. An array supports
polarization if all of its constituent sensor elements support polarization.

Input
Arguments

h - Conformal array

Conformal array specified as a
phased.HeterogeneousConformalArray System object.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability returned as a Boolean value true if the
array supports polarization or false if it does not.

Examples Conformal Array of Short-dipole Antenna Elements Supports
Polarization

Show that a circular conformal array of
phased.ShortDipoleAntennaElement antenna elements supports
polarization.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

elemAngles = ([0:5]*360/6);
elemPosInner = 0.5*[zeros(size(elemAngles));...

cosd(elemAngles); sind(elemAngles)];
elemPosOuter = [zeros(size(elemAngles));...

cosd(elemAngles); sind(elemAngles)];
elemNorms = repmat([0;0],1,12);
sArray = phased.HeterogeneousConformalArray(...

1-488

phased.HeterogeneousConformalArray.isPolarizationCapa

'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1 1 1 1 2 2 2 2 2 2],...
'ElementPosition',[elemPosInner,elemPosOuter],...
'ElementNormal',elemNorms);

isPolarizationCapable(sArray)

ans =

1

The returned value true (1) shows that this array supports
polarization.

1-489

phased.HeterogeneousConformalArray.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row
vector. Values must lie within the range specified by a property of
H. That property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has
no response at frequencies outside that range. If you set the
'RespCut' property of H to '3D', FREQ must be a scalar. When
FREQ is a row vector, plotResponse draws multiple frequency
responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding

1-490

phased.HeterogeneousConformalArray.plotResponse

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must
be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

1-491

phased.HeterogeneousConformalArray.plotResponse

Default: true

’Polarization’

Specify the polarization options for plotting the array response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

1-492

phased.HeterogeneousConformalArray.plotResponse

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’Weights’

Weight values applied to the array, specified as a length-N
column vector or N-by-M matrix. The dimension N is the number
of elements in the array. The interpretation of M depends upon
whether the input argument FREQ is a scalar or row vector.

Weights
Dimensions

FREQ Dimension Purpose

N-by-1 column
vector

Scalar or 1-by-M
row vector

Apply one set
of weights for
the same single
frequency or all M
frequencies.

Scalar Apply all of the M
different columns
in Weights for
the same single
frequency.

N-by-M matrix
1-by-M row vector Apply each of theM

different columns
in Weights for
the corresponding
frequency in FREQ.

’AzimuthAngles’

1-493

phased.HeterogeneousConformalArray.plotResponse

Azimuth angles for plotting array response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting array response, specified as a row
vector. The ElevationAngles parameter sets the display range
and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When yous set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

Default: [-90:90]

’UGrid’

U coordinate values for plotting array response, specified as a
row vector. The UGrid parameter sets the display range and
resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

1-494

phased.HeterogeneousConformalArray.plotResponse

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting array response, specified as a
row vector. The VGrid parameter sets the display range and
resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set VGrid and
UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples Plot Response and Directivity of 8-Element Uniform Circular
Array

This example shows how to construct an 8-element uniform circular
array (UCA) with two different antenna patterns.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
N = 8; azang = (0:N-1)*360/N-180;
sArray = phased.HeterogeneousConformalArray(...

'ElementPosition',...
0.4*[zeros(1,N);cosd(azang);sind(azang)],...
'ElementNormal', zeros(2,N),...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1 1 2 2 2 2]);

Plot its elevation response. Assume the operating frequency
is 1 GHz and the wave propagation speed is the speed of light.

c = physconst('LightSpeed');
fc = 1e9;
plotResponse(sArray,fc,c,'RespCut','El','Format','Polar');

1-495

phased.HeterogeneousConformalArray.plotResponse

Plot the directivity.

plotResponse(sArray,fc,c,'RespCut','El','Format','Polar',...
'Unit','dbi');

1-496

phased.HeterogeneousConformalArray.plotResponse

Plot Response of Disk Array

This example shows how to construct a 24-element disk array using
elements with two different antenna patterns and plot its response.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
N = 8; azang = (0:N-1)*360/N-180;
p0 = [zeros(1,N);cosd(azang);sind(azang)];
posn = [0.6*p0, 0.4*p0, 0.2*p0];

1-497

phased.HeterogeneousConformalArray.plotResponse

sArray1 = phased.HeterogeneousConformalArray(...
'ElementPosition',posn,...
'ElementNormal', zeros(2,3*N),...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1 1 1 1 1 1,...
1 1 1 1 1 1 1 1,...
2 2 2 2 2 2 2 2]);

Show the array.

viewArray(sArray1);

1-498

phased.HeterogeneousConformalArray.plotResponse

Plot the elevation response of this array using uniform weights on
the elements and also a tapered set of weights set by the Weights
parameter. Using the ElevationAngles parameter, restrict the plot of
the response from -60 to 60 degrees in 0.1 degree increments. Assume
the operating frequency is 1 GHz and the wave propagation speed is the
speed of light.

c = physconst('LightSpeed');
fc = 1e9;
wts1 = ones(3*N,1);

1-499

phased.HeterogeneousConformalArray.plotResponse

wts1 = wts1/sum(abs(wts1));
wts2 = [0.5*ones(N,1); 0.7*ones(N,1); 1*ones(N,1)];
wts2 = wts2/sum(abs(wts2));
plotResponse(sArray1,fc,c,'RespCut','El',...

'Format','Polar',...
'ElevationAngles',[-60:0.1:60],...
'Weights',...
[wts1,wts2],...
'Unit','db');

1-500

phased.HeterogeneousConformalArray.plotResponse

As expected, the tapered weights broaden the mainlobe and reduce
the sidelobes.

See Also uv2azel | azel2uv

1-501

phased.HeterogeneousConformalArray.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-502

phased.HeterogeneousConformalArray.step

Purpose Output responses of array elements

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP
at operating frequencies specified in FREQ and directions specified in
ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Array object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector
of length L. Typical values are within the range specified by a
property of H.Element. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the
array. The element has zero response at frequencies outside that
range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle

1-503

phased.HeterogeneousConformalArray.step

must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

Output
Arguments

RESP

Voltage responses of the phased array. The output depends on
whether the array supports polarization or not.

• If the array is not capable of supporting polarization, the
voltage response, RESP, has the dimensions N-by-M-by-L. N
is the number of elements in the array. The dimension M is
the number of angles specified in ANG. L is the number of
frequencies specified in FREQ. For any element, the columns
of RESP contain the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage
response, RESP, is a MATLAB struct containing two fields,
RESP.H and RESP.V. The field, RESP.H, represents the array’s
horizontal polarization response, while RESP.V represents
the array’s vertical polarization response. Each field has the
dimensions N-by-M-by-L. N is the number of elements in the
array, and M is the number of angles specified in ANG. L is
the number of frequencies specified in FREQ. Each column of
RESP contains the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

Examples Construct an 8-element uniform circular array (UCA). Assume the
operating frequency is 1 GHz. Find the response of each element in this
array in the direction of 30° azimuth and 5°.

1-504

phased.HeterogeneousConformalArray.step

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
N = 8; azang = (0:N-1)*360/N-180;
sArray = phased.HeterogeneousConformalArray(...

'ElementPosition',...
[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal', zeros(2,N),...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1 1 2 2 2 2]);

fc = 1e9;
ang = [30;5];
resp = step(sArray,fc,ang)

resp =

0.8013
0.8013
0.8013
0.8013
0.7666
0.7666
0.7666
0.7666

See Also uv2azel | phitheta2azel

1-505

phased.HeterogeneousConformalArray.viewArray

Purpose View array geometry

Syntax viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray(___)

Description viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(___) returns the handle of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

Input
Arguments

H

Array object

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’ShowIndex’

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

’ShowNormals’

1-506

phased.HeterogeneousConformalArray.viewArray

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

’ShowTaper’

Set this value to true to specify whether to change the element
color brightness in proportion to the element taper magnitude.
When this value is set to false, all elements are drawn with the
same color.

Default: false

’Title’

String specifying the title of the plot.

Default: 'Array Geometry'

Output
Arguments

hPlot

Handle of array elements in figure window.

Examples Positions and Normal Directions in Uniform Circular Array

Display the element positions and normal directions of all elements of
an 8-element heterogeneous uniform circular array.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
N = 8; azang = (0:N-1)*360/N-180;
sArray = phased.HeterogeneousConformalArray(...

'ElementPosition',...
[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal', zeros(2,N),...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1 1 2 2 2 2]);

1-507

phased.HeterogeneousConformalArray.viewArray

viewArray(sArray,'ShowIndex','all','ShowNormal',true);

See Also phased.ArrayResponse

1-508

phased.HeterogeneousConformalArray.viewArray

Related
Examples

• Phased Array Gallery

1-509

../examples/phased-array-gallery.html

phased.HeterogeneousULA

Purpose Heterogeneous uniform linear array

Description The phased.HeterogeneousULA object creates a uniform linear array
from a heterogeneous set of antenna elements. A heterogeneous array
is an array in which the antenna or microphone elements may be of
different kinds or have different properties. An example would be an
array of elements each having different antenna patterns.

To compute the response for each element in the array for specified
directions:

1 Define and set up your uniform linear array. See “Construction”
on page 1-510.

2 Call step to compute the response according to the properties of
phased.HeterogeneousULA. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.HeterogeneousULA creates a heterogeneous uniform linear
array (ULA) System object, H. The object models a heterogeneous ULA
formed with generally different sensor elements. The origin of the local
coordinate system is the phase center of the array. The positive x-axis
is the direction normal to the array, and the elements of the array are
located along the y-axis.

H = phased.HeterogeneousULA(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties ElementSet

Set of elements used in the array

Specify the set of different elements used in the sensor array as a
row MATLAB cell array. Each member of the cell array contains
an element object in the phased package. Elements specified
in the ElementSet property must be either all antennas or all

1-510

phased.HeterogeneousULA

microphones. In addition, all specified antenna elements should
have same polarization capability. Specify the element of the
sensor array as a handle. The element must be an element object
in the phased package.

Default: One cell containing one isotropic antenna element

ElementIndices

Elements location assignment

This property specifies the mapping of elements in the array. The
property assigns elements to their locations in the array using
indices into the ElementSet property. ElementIndices must be
a 1-by-N row vector where N is greater than 1. N is the number
of elements in the sensor array. The values in ElementIndices
should be less than or equal to the number of entries in the
ElementSet property.

Default: [1 1]

ElementSpacing

Element spacing

A scalar containing the spacing (in meters) between two adjacent
elements in the array.

Default: 0.5

Taper

Element tapering

Element tapering specified as a complex-valued scalar or a
complex-valued 1-by-N row vector. N is the number of elements
in the array as determined by the size of the ElementIndices
property. Tapers, also known as weights, are applied to each
sensor element in the sensor array and modify both the amplitude
and phase of the received data. If 'Taper' is a scalar, the same

1-511

phased.HeterogeneousULA

weights are applied to each element. If 'Taper' is a vector, each
weight is applied to the corresponding sensor element.

Default: 1

Methods clone Create new system object with
identical values

collectPlaneWave Simulate received plane waves

getElementPosition Positions of array elements

getNumElements Number of elements in array

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

getTaper Array element tapers

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotResponse Plot response pattern of array

release Allow property value and input
characteristics

step Output responses of array
elements

viewArray View array geometry

Examples Response of 10-Element Heterogeneous ULA Array

Create a 10-element heterogeneous ULA consisting of cosine antenna
elements with different power factors. Two elements at each end have

1-512

phased.HeterogeneousULA

power values of 1.5 while the inside elements have power values of 1.8.
Find the response of each element at boresight.

Construct the heterogeneous array and show the element responses at
1 GHz.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
sArray = phased.HeterogeneousULA(...

'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 2 2 2 2 2 2 1 1]);

fc = 1e9;
ang = [0;0];
resp = step(sArray,fc,ang)

resp =

1
1
1
1
1
1
1
1
1
1

Plot an azimuth cut of the array response at 1 GHz.

c = physconst('LightSpeed');
plotResponse(sArray,fc,c,'RespCut','Az','Format','Polar');

1-513

phased.HeterogeneousULA

Response of an Array of Polarized Short-Dipole Antennas

Build a heterogeneous uniform line array of 10 short-dipole sensor
elements. Because short dipoles support polarization, the array should
also. Verify that the array supports polarization by looking at the
output of isPolarizationCapable. Then, draw the array, showing
the tapering.

Build the array. Then, verify that it supports polarization by looking at
the returned value of the isPolarizationCapable method.

1-514

phased.HeterogeneousULA

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 2 2 2 2 2 2 1 1],...
'Taper',taylorwin(10)');

isPolarizationCapable(sArray)

ans =

1

View the array.

viewArray(sArray,'ShowTaper',true,'ShowIndex',...
'All','ShowTaper',true)

1-515

phased.HeterogeneousULA

Show the element horizontal polarization responses at 10 degrees
azimuth angle.

fc = 150e6;
ang = [10];
resp = step(sArray,fc,ang)
resp.H

resp =

1-516

phased.HeterogeneousULA

H: [10x1 double]
V: [10x1 double]

ans =

0
0

-1.2442
-1.6279
-1.8498
-1.8498
-1.6279
-1.2442

0
0

Plot the combined polarization response.

c = physconst('LightSpeed');
plotResponse(sArray,fc,c,'RespCut','Az','Format',...

'Polar','Polarization','C');

1-517

phased.HeterogeneousULA

References [1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ULA | phased.URA | phased.ReplicatedSubarray |
phased.PartitionedArray | phased.HeterogeneousURA |
phased.CosineAntennaElementphased.CrossedDipoleAntennaElement

1-518

phased.HeterogeneousULA

| phased.CustomAntennaElement |
phased.IsotropicAntennaElementphased.ShortDipoleAntennaElement

Related
Examples

• Phased Array Gallery

1-519

../examples/phased-array-gallery.html

phased.HeterogeneousULA.clone

Purpose Create new system object with identical values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-520

phased.HeterogeneousULA.collectPlaneWave

Purpose Simulate received plane waves

Syntax Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description Y = collectPlaneWave(H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave(H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

Input
Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

1-521

phased.HeterogeneousULA.collectPlaneWave

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output
Arguments

Y

Received signals. Y is an N-column matrix, where N is the number
of elements in the array H. Each column of Y is the received signal
at the corresponding array element, with all incoming signals
combined.

Examples Simulate the received signal at a heterogeneous 4-element ULA.

The signals arrive from 10° and 30° degrees azimuth. Both signals have
an elevation angle of 0°. Assume the propagation speed is the speed of
light and the carrier frequency of the signal is 100 MHz.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2 2 1]);

y = collectPlaneWave(sArray,randn(4,2),[10 30],1e8,...
physconst('LightSpeed'));

y(:,1)

ans =

1-522

phased.HeterogeneousULA.collectPlaneWave

0.7430 - 0.3705i
0.8418 + 0.4308i

-2.4817 + 0.9157i
1.0724 - 0.4748i

Algorithms collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. The
method does not account for the response of individual elements in
the array.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | phitheta2azel

1-523

phased.HeterogeneousULA.getElementPosition

Purpose Positions of array elements

Syntax POS = getElementPosition(H)
POS = getElementPosition(H,ELEIDX)

Description POS = getElementPosition(H) returns the element positions of the
HeterogeneousULA System object, H. POS is a 3-by-N matrix, where N
is the number of elements in H. Each column of POS defines the position
of an element in the local coordinate system, in meters, using the form
[x; y; z]. The origin of the local coordinate system is the phase center
of the array. The positive x-axis is the direction normal to the array,
and the elements of the array are located along the y-axis.

POS = getElementPosition(H,ELEIDX) returns only the positions of
the elements that are specified in the element index vector ELEIDX.
This syntax can use any of the input arguments in the previous syntax.

Examples Construct a 4–element heterogeneous ULA, and obtain the element
positions.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2 2 1]);

pos = getElementPosition(sArray);

pos =

0 0 0 0
-0.7500 -0.2500 0.2500 0.7500

0 0 0 0

1-524

phased.HeterogeneousULA.getNumElements

Purpose Number of elements in array

Syntax N = getNumElements(H)

Description N = getNumElements(H) returns the number of elements, N, in the
HeterogeneousULA object H.

Examples Construct a default ULA, and obtain the number of elements in that
array.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2 2 1]);

N = getNumElements(sArray)

N =

4

1-525

phased.HeterogeneousULA.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-526

phased.HeterogeneousULA.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-527

phased.HeterogeneousULA.getTaper

Purpose Array element tapers

Syntax wts = getTaper(h)

Description wts = getTaper(h) returns the tapers, wts, applied to each element
of the phased heterogeneous uniform line array (ULA), h. Tapers are
often referred to as weights.

Input
Arguments

h - Heterogeneous Uniform line array
phased.HeterogeneousULA System object

Heterogeneous uniform line array specified as a
phased.HeterogeneousULA System object.

Output
Arguments

wts - Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1 complex-valued
vector, where N is the number of elements in the array.

Examples Heterogeneous ULA with Taylor Window Taper

Construct a 5-element heterogeneous ULA with a Taylor window taper.
Then, obtain the element taper values.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2 2 2 1],'Taper',taylorwin(5)');

w = getTaper(sArray)

w =

1-528

phased.HeterogeneousULA.getTaper

0.5181
1.2029
1.5581
1.2029
0.5181

1-529

phased.HeterogeneousULA.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
HeterogeneousULA System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-530

phased.HeterogeneousULA.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the array supports polarization. An array supports
polarization if all of its constituent sensor elements support polarization.

Input
Arguments

h - Uniform line array

Uniform line array specified as a phased.HeterogeneousULA
System object.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if
the array supports polarization or false if it does not.

Examples Heterogeneous ULA of Short-Dipole Antenna Elements
Supports Polarization

Show that a heterogeneous array of
phased.ShortDipoleAntennaElement antenna elements supports
polarization.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2 2 2 1]);

isPolarizationCapable(sArray)

ans =

1-531

phased.HeterogeneousULA.isPolarizationCapable

1

The returned value true (1) shows that this array supports
polarization.

1-532

phased.HeterogeneousULA.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row
vector. Values must lie within the range specified by a property of
H. That property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has
no response at frequencies outside that range. If you set the
'RespCut' property of H to '3D', FREQ must be a scalar. When
FREQ is a row vector, plotResponse draws multiple frequency
responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding

1-533

phased.HeterogeneousULA.plotResponse

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must
be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

1-534

phased.HeterogeneousULA.plotResponse

Default: true

’Polarization’

Specify the polarization options for plotting the array response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

1-535

phased.HeterogeneousULA.plotResponse

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’Weights’

Weight values applied to the array, specified as a length-N
column vector or N-by-M matrix. The dimension N is the number
of elements in the array. The interpretation of M depends upon
whether the input argument FREQ is a scalar or row vector.

Weights
Dimensions

FREQ Dimension Purpose

N-by-1 column
vector

Scalar or 1-by-M
row vector

Apply one set
of weights for
the same single
frequency or all M
frequencies.

Scalar Apply all of the M
different columns
in Weights for
the same single
frequency.

N-by-M matrix
1-by-M row vector Apply each of theM

different columns
in Weights for
the corresponding
frequency in FREQ.

’AzimuthAngles’

1-536

phased.HeterogeneousULA.plotResponse

Azimuth angles for plotting array response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting array response, specified as a row
vector. The ElevationAngles parameter sets the display range
and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When yous set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

Default: [-90:90]

’UGrid’

U coordinate values for plotting array response, specified as a
row vector. The UGrid parameter sets the display range and
resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

1-537

phased.HeterogeneousULA.plotResponse

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting array response, specified as a
row vector. The VGrid parameter sets the display range and
resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set VGrid and
UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples Line Plot Showing Multiple Frequencies

Using a line plot, show the azimuth cut response of a 5-element
heterogeneous uniform linear array along 0 degrees elevation. The plot
shows the responses at operating frequencies of 200 MHz and 400 MHz.

Construct the array from z-directed and y-directed short dipole antenna
elements.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[2e8 5e8],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[2e8 5e8],...
'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2 2 2 1]);

Plot the response.

fc = [3e8 4e8];
c = physconst('LightSpeed');

1-538

phased.HeterogeneousULA.plotResponse

plotResponse(sArray,fc,c);

Plot Response and Directivity for 5-Element Array

Construct a 5-element heterogeneous ULA and plot its azimuth
response in polar format. Assume the operating frequency spans
200-500 MHz and the wave propagation speed is the speed of light.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[2e8 5e8],...

1-539

phased.HeterogeneousULA.plotResponse

'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...

'FrequencyRange',[2e8 5e8],...
'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2 2 2 1]);

Plot the response at 300 MHz.

fc = 3e8;
c = physconst('LightSpeed');
plotResponse(sArray,fc,c,'RespCut','Az','Format','Polar');

1-540

phased.HeterogeneousULA.plotResponse

Plot the directivity of the array at 300 MHz.

plotResponse(sArray,fc,c,'RespCut','Az','Format','Polar',...
'Unit','dbi');

1-541

phased.HeterogeneousULA.plotResponse

Plot Response for 9-Element Array with Two Weight Sets

Construct a 9-element heterogeneous ULA from short dipole elements
with different orientations. Assume the element response is in the
frequency range 200-500 MHz. Use the Weights parameter to set
two different sets of weights: a uniform weighting and a Taylor
weighting. Plot the array’s azimuth response in polar format. Using
the AzimuthAngles parameter, restrict the display range from -45 to 45
degrees in 0.1 degree increments.

1-542

phased.HeterogeneousULA.plotResponse

Construct the array.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[2e8 5e8],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[2e8 5e8],...
'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 2 2 2 2 2 1 1]);

Plot the response at 300 MHz.

fc = 3e8;
wts1 = ones(9,1);
wts2 = taylorwin(9);
c = physconst('LightSpeed');
plotResponse(sArray,fc,c,'RespCut','Az',...

'AzimuthAngles',[-45:0.1:45],...
'Weights',[wts1,wts2]);

1-543

phased.HeterogeneousULA.plotResponse

As expected, the tapered weighting broadens the mainlobe and reduces
the sidelobes.

See Also uv2azel | azel2uv

1-544

phased.HeterogeneousULA.release

Purpose Allow property value and input characteristics

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-545

phased.HeterogeneousULA.step

Purpose Output responses of array elements

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP
at operating frequencies specified in FREQ and directions specified in
ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Array object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector
of length L. Typical values are within the range specified by a
property of H.Element. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the
array. The element has zero response at frequencies outside that
range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle

1-546

phased.HeterogeneousULA.step

must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

Output
Arguments

RESP

Voltage responses of the phased array. The output depends on
whether the array supports polarization or not.

• If the array is not capable of supporting polarization, the
voltage response, RESP, has the dimensions N-by-M-by-L. N
is the number of elements in the array. The dimension M is
the number of angles specified in ANG. L is the number of
frequencies specified in FREQ. For any element, the columns
of RESP contain the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage
response, RESP, is a MATLAB struct containing two fields,
RESP.H and RESP.V. The field, RESP.H, represents the array’s
horizontal polarization response, while RESP.V represents
the array’s vertical polarization response. Each field has the
dimensions N-by-M-by-L. N is the number of elements in the
array, and M is the number of angles specified in ANG. L is
the number of frequencies specified in FREQ. Each column of
RESP contains the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

1-547

phased.HeterogeneousULA.step

Examples Heterogeneous ULA of Cosine Antenna Elements

Create a 5-element heterogeneous ULA of cosine antenna elements
with difference responses, and find the response of each element at
30° azimuth.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
sArray = phased.HeterogeneousULA(...

'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2 2 2 1]);

fc = 1e9;
c = physconst('LightSpeed');
ang = [30;0];
resp = step(sArray,fc,ang)

resp =

0.8059
0.7719
0.7719
0.7719
0.8059

Response of Heterogeneous Microphone ULA Array

Find the response of a heterogeneous ULA array of 7 custom microphone
elements with different responses.

sMic1 = phased.CustomMicrophoneElement(...
'FrequencyResponse',[20 20e3]);

sMic1.PolarPatternFrequencies = [500 1000];
sMic1.PolarPattern = mag2db([...

0.5+0.5*cosd(sMic1.PolarPatternAngles);...
0.6+0.4*cosd(sMic1.PolarPatternAngles)]);

sMic2 = phased.CustomMicrophoneElement(...
'FrequencyResponse',[20 20e3]);

sMic2.PolarPatternFrequencies = [500 1000];

1-548

phased.HeterogeneousULA.step

sMic2.PolarPattern = mag2db([...
ones(size(sMic2.PolarPatternAngles));...
ones(size(sMic2.PolarPatternAngles))]);

sArray = phased.HeterogeneousULA(...
'ElementSet',{sMic1,sMic2},...
'ElementIndices',[1 1 2 2 2 1 1]);

fc = [1500, 2000];
ang = [40 50; 0 0];
resp = step(sArray,fc,ang)

resp(:,:,1) =

9.0642 8.5712
9.0642 8.5712

10.0000 10.0000
10.0000 10.0000
10.0000 10.0000
9.0642 8.5712
9.0642 8.5712

resp(:,:,2) =

9.0642 8.5712
9.0642 8.5712

10.0000 10.0000
10.0000 10.0000
10.0000 10.0000
9.0642 8.5712
9.0642 8.5712

See Also uv2azel | phitheta2azel

1-549

phased.HeterogeneousULA.viewArray

Purpose View array geometry

Syntax viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray(___)

Description viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(___) returns the handle of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

Input
Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’ShowIndex’

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

’ShowNormals’

1-550

phased.HeterogeneousULA.viewArray

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

’ShowTaper’

Set this value to true to specify whether to change the element
color brightness in proportion to the element taper magnitude.
When this value is set to false, all elements are drawn with the
same color.

Default: false

’Title’

String specifying the title of the plot.

Default: 'Array Geometry'

Output
Arguments

hPlot

Handle of array elements in figure window.

Examples Geometry and Indices of Heterogeneous ULA Elements

Display the geometry of a 5-element heterogeneous ULA, and show the
indices for the first three elements.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
sArray = phased.HeterogeneousULA(...

'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2 2 2 1]);

viewArray(sArray,'ShowIndex',[1:3]);

1-551

phased.HeterogeneousULA.viewArray

See Also phased.ArrayResponse

Related
Examples

• Phased Array Gallery

1-552

../examples/phased-array-gallery.html

phased.HeterogeneousURA

Purpose Heterogeneous uniform rectangular array

Description The HeterogeneousURA object constructs a heterogeneous uniform
rectangular array (URA).

To compute the response for each element in the array for specified
directions:

1 Define and set up your uniform rectangular array. See “Construction”
on page 1-553.

2 Call step to compute the response according to the properties of
phased.HeterogeneousURA. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.HeterogeneousURA creates a heterogeneous uniform
rectangular array (URA) System object, H. This object models a
heterogeneous URA formed with sensor elements whose pattern may
vary from element to element. Array elements are distributed in the
yz-plane in a rectangular lattice. An M-by-N heterogeneous URA has M
rows and N columns. The array boresight direction is along the positive
x-axis. The default array is a 2-by-2 URA of isotropic antenna elements.

H = phased.HeterogeneousURA(Name,Value) creates the object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties ElementSet

Set of elements used in the array

Specify the set of different elements used in the sensor array as a
row MATLAB cell array. Each member of the cell array contains
an element object in the phased package. Elements specified
in the ElementSet property must be either all antennas or all
microphones. In addition, all specified antenna elements should
have same polarization capability. Specify the element of the

1-553

phased.HeterogeneousURA

sensor array as a handle. The element must be an element object
in the phased package.

Default: One cell containing one isotropic antenna element

ElementIndices

Elements location assignment

This property specifies the mapping of elements in the array.
The property assigns elements to their locations in the array
using the indices into the ElementSet property. The value of
ElementIndices must be an M-by-N matrix. In this matrix, M
represents the number of rows and N represents the number of
columns. Rows are along y-axis and columns are along z-axis of
the local coordinate system. The values in the matrix specified by
ElementIndices should be less than or equal to the number of
entries in the ElementSet property.

Default: [1 1;1 1]

ElementSpacing

Element spacing

A 1-by-2 vector or a scalar containing the element spacing (in
meters) of the array. If ElementSpacing is a 1-by-2 vector, it is
in the form of [SpacingBetweenRows,SpacingBetweenColumns].
See “Spacing Between Columns” on page 1-556 and “Spacing
Between Rows” on page 1-556. If ElementSpacing is a scalar,
both spacings are the same.

Default: [0.5 0.5]

Lattice

Element lattice

Specify the element lattice as one of 'Rectangular' |
'Triangular'. When you set the Lattice property to

1-554

phased.HeterogeneousURA

'Rectangular', all elements in the heterogeneous URA are
aligned in both row and column directions. When you set the
Lattice property to 'Triangular', the elements in even rows
are shifted toward the positive row axis direction by a distance
of half the element spacing along the row.

Default: 'Rectangular'

Taper

Element taper

Element tapering specified as a complex-valued scalar or a
complex-valued M-by-N matrix. M is the number of elements
along the z-axis and N is the number of elements along
y-axis. M and N correspond to the values of [NumberofRows,
NumberOfColumns] in the Size property. Tapers, also known as
weights, are applied to each sensor element in the sensor array
and modify both the amplitude and phase of the received data. If
'Taper' is a scalar, the same weights are applied to each element.
If 'Taper' is a vector, each weight is applied to the corresponding
sensor element.

Default: 1

Methods clone Create new system object with
identical values

collectPlaneWave Simulate received plane waves

getElementPosition Positions of array elements

getNumElements Number of elements in array

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

1-555

phased.HeterogeneousURA

getTaper Array element tapers

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotResponse Plot response pattern of array

release Allow property value and input
characteristics

step Output responses of array
elements

viewArray View array geometry

Definitions Spacing Between Columns

The spacing between columns is the distance between adjacent elements
in the same row.

Spacing Between Rows

The spacing between rows is the distance along the column axis
direction between adjacent rows.

1-556

phased.HeterogeneousURA

Spacing Between
Rows

1-557

phased.HeterogeneousURA

Examples Azimuth Response of a 3-by-2 Heterogeneous URA

Construct a 3-by-2 heterogeneous URA with a rectangular lattice, and
find the response of each element at 30 degrees azimuth and 0 degrees
elevation. Assume the operating frequency is 1 GHz.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
sArray = phased.HeterogeneousURA(...

'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1; 2 2; 1 1]);

fc = 1e9;
ang = [30;0];
resp = step(sArray,fc,ang)

resp =

0.8059
0.7719
0.8059
0.8059
0.7719
0.8059

Plot the azimuth response of the array.

c = physconst('LightSpeed');
plotResponse(sArray,fc,c,'RespCut','Az','Format','Polar');

1-558

phased.HeterogeneousURA

Draw Heterogeneous Triangular Lattice Array

Construct a 3-by-3 heterogeneous URA with a triangular lattice. The
element spacing is 0.5 meter. Display the array shape.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
sArray = phased.HeterogeneousURA(...

'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1; 2 2 2; 1 1 1],...

1-559

phased.HeterogeneousURA

'Lattice','Triangular');
viewArray(sArray);

References [1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

[2] Brookner, E., ed. Practical Phased Array Antenna Systems. Boston:
Artech House, 1991.

1-560

phased.HeterogeneousURA

[3] Mailloux, R. J. “Phased Array Theory and Technology,” Proceedings
of the IEEE, Vol., 70, Number 3, 1982, pp. 246–291.

[4] Mott, H. Antennas for Radar and Communications, A Polarimetric
Approach. New York: John Wiley & Sons, 1992.

[5] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ReplicatedSubarray | phased.PartitionedArray |
phased.ConformalArray | phased.CosineAntennaElement |
phased.CustomAntennaElement | phased.IsotropicAntennaElement
| phased.ULA | phased.URA | phased.HeterogeneousULA |
phased.HeterogeneousConformalArray

Related
Examples

• Phased Array Gallery

1-561

../examples/phased-array-gallery.html

phased.HeterogeneousURA.clone

Purpose Create new system object with identical values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-562

phased.HeterogeneousURA.collectPlaneWave

Purpose Simulate received plane waves

Syntax Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description Y = collectPlaneWave(H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave(H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

Input
Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

1-563

phased.HeterogeneousURA.collectPlaneWave

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output
Arguments

Y

Received signals. Y is an N-column matrix, where N is the number
of elements in the array H. Each column of Y is the received signal
at the corresponding array element, with all incoming signals
combined.

Examples Simulate the received signal at a 2-by-2 element heterogeneous URA
with different cosine antenna patterns. The signals arrive from 10° and
30° azimuth. Both signals have an elevation angle of 0° degrees.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
sArray = phased.HeterogeneousURA(...

'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2; 1 2]);

y = collectPlaneWave(sArray,randn(4,2),[10 30],1e8,...
physconst('LightSpeed'));

y(:,1)

ans =

4.2642 - 0.5130i
2.6971 - 0.2353i

-0.6539 - 0.0625i
2.8244 - 0.2227i

1-564

phased.HeterogeneousURA.collectPlaneWave

Algorithms collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. This
method does not account for the response of individual elements in
the array.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | phitheta2azel

1-565

phased.HeterogeneousURA.getElementPosition

Purpose Positions of array elements

Syntax POS = getElementPosition(H)
POS = getElementPosition(H,ELEIDX)

Description POS = getElementPosition(H) returns the element positions of the
HeterogeneousURA System object, H. POS is a 3-by-N matrix where N
is the number of elements in H. Each column of POS defines the position
of an element in the local coordinate system, in meters, using the form
[x; y; z].

For details regarding the local coordinate system of the URA or
heterogeneous URA, enter phased.URA.coordinateSystemInfo.

POS = getElementPosition(H,ELEIDX) returns the positions of the
elements that are specified in the element index vector, ELEIDX. The
element indices of a URA run down each column, then to the top of the
next column to the right. For example, in a URA with 4 elements in
each row and 3 elements in each column, the element in the third row
and second column has an index value of 6. This syntax can use any of
the input arguments in the previous syntax.

Examples Element Positions of Heterogeneous URA

Construct a heterogeneous URA with a rectangular lattice, and obtain
the element positions.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

sArray = phased.HeterogeneousURA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2; 2 1]);

pos = getElementPosition(sArray);

1-566

phased.HeterogeneousURA.getElementPosition

pos =

0 0 0 0
-0.2500 -0.2500 0.2500 0.2500
0.2500 -0.2500 0.2500 -0.2500

1-567

phased.HeterogeneousURA.getNumElements

Purpose Number of elements in array

Syntax N = getNumElements(H)

Description N = getNumElements(H) returns the number of elements, N, in the
Heterogeneous URA object H.

Examples Construct a Heterogeneous URA, and obtain the number of elements.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

sArray = phased.HeterogeneousURA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2; 2 1]);

N = getNumElements(sArray)

N =

4

1-568

phased.HeterogeneousURA.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-569

phased.HeterogeneousURA.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-570

phased.HeterogeneousURA.getTaper

Purpose Array element tapers

Syntax wts = getTaper(h)

Description wts = getTaper(h) returns the tapers, wts, applied to each element of
the phased heterogeneous uniform rectangular array (URA), h. Tapers
are often referred to as weights.

Input
Arguments

h - Uniform rectangular array
phased.HeterogeneousURA System object

Uniform rectangular array specified as a
phased.HeterogeneousURA System object.

Output
Arguments

wts - Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued
vector. The dimension N is the number of elements in the array.
The array tapers are returned in the same order as the element
indices. The element indices of a URA run down each column,
then to the top of the next column to the right.

Examples Heterogeneous URA Array Element Tapering

Construct a 2-by-5 element heterogeneous URA with a Taylor window
taper along each row. Then, show the array with the element taper
shading.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

sArray = phased.HeterogeneousURA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2 2 2 1 ; 1 2 2 2 1],...

1-571

phased.HeterogeneousURA.getTaper

'Taper',[taylorwin(5)';taylorwin(5)']);
w = getTaper(sArray)

w =

0.5181
0.5181
1.2029
1.2029
1.5581
1.5581
1.2029
1.2029
0.5181
0.5181

viewArray(sArray,'ShowTaper',true);

1-572

phased.HeterogeneousURA.getTaper

1-573

phased.HeterogeneousURA.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
HeterogeneousURA System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-574

phased.HeterogeneousURA.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the array supports polarization. An array supports
polarization if all of its constituent sensor elements support polarization.

Input
Arguments

h - Uniform rectangular array

Uniform rectangular array specified as
phased.HeterogeneousURA System object.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if
the array supports polarization or false if it does not.

Examples Short-dipole Antenna Array Polarization

Show that an array of phased.ShortDipoleAntennaElement
short-dipole antenna element supports polarization.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],...
'AxisDirection','Y');

sArray = phased.HeterogeneousURA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2 2 2 1 ; 1 2 2 2 1]);

isPolarizationCapable(sArray)

ans =

1

1-575

phased.HeterogeneousURA.isPolarizationCapable

The returned value true (1) shows that this array supports
polarization.

1-576

phased.HeterogeneousURA.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row
vector. Values must lie within the range specified by a property of
H. That property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has
no response at frequencies outside that range. If you set the
'RespCut' property of H to '3D', FREQ must be a scalar. When
FREQ is a row vector, plotResponse draws multiple frequency
responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding

1-577

phased.HeterogeneousURA.plotResponse

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must
be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

1-578

phased.HeterogeneousURA.plotResponse

Default: true

’Polarization’

Specify the polarization options for plotting the array response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

1-579

phased.HeterogeneousURA.plotResponse

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’Weights’

Weight values applied to the array, specified as a length-N
column vector or N-by-M matrix. The dimension N is the number
of elements in the array. The interpretation of M depends upon
whether the input argument FREQ is a scalar or row vector.

Weights
Dimensions

FREQ Dimension Purpose

N-by-1 column
vector

Scalar or 1-by-M
row vector

Apply one set
of weights for
the same single
frequency or all M
frequencies.

Scalar Apply all of the M
different columns
in Weights for
the same single
frequency.

N-by-M matrix
1-by-M row vector Apply each of theM

different columns
in Weights for
the corresponding
frequency in FREQ.

’AzimuthAngles’

1-580

phased.HeterogeneousURA.plotResponse

Azimuth angles for plotting array response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting array response, specified as a row
vector. The ElevationAngles parameter sets the display range
and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When yous set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

Default: [-90:90]

’UGrid’

U coordinate values for plotting array response, specified as a
row vector. The UGrid parameter sets the display range and
resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

1-581

phased.HeterogeneousURA.plotResponse

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting array response, specified as a
row vector. The VGrid parameter sets the display range and
resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set VGrid and
UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples Azimuth Response and Directivity of Heterogeneous URA

Construct a 3-by-3 heterogeneous URA with a rectangular lattice, then
plot the array’s azimuth response at 300 MHz.

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[2e8 5e8],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[2e8 5e8],...
'AxisDirection','Y');

sArray = phased.HeterogeneousURA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1; 2 2 2; 1 1 1]);

fc = [3e8];
c = physconst('LightSpeed');
plotResponse(sArray,fc,c);

1-582

phased.HeterogeneousURA.plotResponse

Plot the same result in polar form.

plotResponse(sArray,fc,c,'RespCut','Az','Format','Polar');

1-583

phased.HeterogeneousURA.plotResponse

Finally, plot the directivity.

plotResponse(sArray,fc,c,'RespCut','Az','Unit','dbi');

1-584

phased.HeterogeneousURA.plotResponse

Azimuth Responses of a Heterogeneous URA For Two Sets
of Weights

Construct a square 3-by-3 heterogeneous URA composed of 9
short-dipole antenna elements with different orientations. Using the
AzimuthAngles parameter, plot the array’s azimuth response in the -45
degrees to 45 degrees in 0.1 degree increments. The Weights parameter
lets you display the array’s response simultaneously for different sets of
weights: in this case a uniform set of weights and a tapered set.

1-585

phased.HeterogeneousURA.plotResponse

sElement1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[2e8 5e8],...
'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[2e8 5e8],...
'AxisDirection','Y');

sArray = phased.HeterogeneousURA(...
'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1; 2 2 2; 1 1 1]);

fc = [3e8];
c = physconst('LightSpeed');
wts1 = ones(9,1)/9;
wts2 = [.7,.7,.7,.7,1,.7,.7,.7,.7]';
wts2 = wts2/sum(wts2);
plotResponse(sArray,fc,c,'RespCut','Az',...

'Format','Line',...
'AzimuthAngles',[-45:0.1:45],...
'Weights',[wts1,wts2],'Unit','db');

1-586

phased.HeterogeneousURA.plotResponse

See Also uv2azel | azel2uv

1-587

phased.HeterogeneousURA.release

Purpose Allow property value and input characteristics

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-588

phased.HeterogeneousURA.step

Purpose Output responses of array elements

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP
at operating frequencies specified in FREQ and directions specified in
ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Array object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector
of length L. Typical values are within the range specified by a
property of H.Element. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the
array. The element has zero response at frequencies outside that
range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle

1-589

phased.HeterogeneousURA.step

must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

Output
Arguments

RESP

Voltage responses of the phased array. The output depends on
whether the array supports polarization or not.

• If the array is not capable of supporting polarization, the
voltage response, RESP, has the dimensions N-by-M-by-L. N
is the number of elements in the array. The dimension M is
the number of angles specified in ANG. L is the number of
frequencies specified in FREQ. For any element, the columns
of RESP contain the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage
response, RESP, is a MATLAB struct containing two fields,
RESP.H and RESP.V. The field, RESP.H, represents the array’s
horizontal polarization response, while RESP.V represents
the array’s vertical polarization response. Each field has the
dimensions N-by-M-by-L. N is the number of elements in the
array, and M is the number of angles specified in ANG. L is
the number of frequencies specified in FREQ. Each column of
RESP contains the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

1-590

phased.HeterogeneousURA.step

Examples Response of a 2-by-2 Heterogeneous URA of Cosine
Antennas

Construct a 2-by-2 rectangular lattice heterogeneous URA of cosine
antenna elements, and find and plot the response of each element at 30°
azimuth and 0° elevation. Assume the operating frequency is 1 GHz.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
sArray = phased.HeterogeneousURA(...

'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 2; 2 1]);

fc = 1e9;
c = physconst('LightSpeed');
ang = [30;0];
resp = step(sArray,fc,ang)

resp =

0.8059
0.7719
0.7719
0.8059

plotResponse(sArray,fc,c);

1-591

phased.HeterogeneousURA.step

See Also uv2azel | phitheta2azel

1-592

phased.HeterogeneousURA.viewArray

Purpose View array geometry

Syntax viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray(___)

Description viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(___) returns the handle of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

Input
Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’ShowIndex’

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

’ShowNormals’

1-593

phased.HeterogeneousURA.viewArray

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

’ShowTaper’

Set this value to true to specify whether to change the element
color brightness in proportion to the element taper magnitude.
When this value is set to false, all elements are drawn with the
same color.

Default: false

’Title’

String specifying the title of the plot.

Default: 'Array Geometry'

Output
Arguments

hPlot

Handle of array elements in figure window.

Examples Geometry, Normal Directions, and Indices of Heterogeneous
URA Elements

Display the element positions, normal directions, and indices for all
elements of a 4-by-4 heterogeneous URA.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
sArray = phased.HeterogeneousURA(...

'ElementSet',{sElement1,sElement2},...
'ElementIndices',[1 1 1 1; 1 2 2 1; 1 2 2 1; 1 1 1 1]);

viewArray(sArray,'ShowIndex','all','ShowNormal',true);

1-594

phased.HeterogeneousURA.viewArray

See Also phased.ArrayResponse

Related
Examples

• Phased Array Gallery

1-595

../examples/phased-array-gallery.html

phased.IsotropicAntennaElement

Purpose Isotropic antenna element

Description The IsotropicAntennaElement object creates an antenna element with
an isotropic response pattern. This antenna object does not support
polarization.

To compute the response of the antenna element for specified directions:

1 Define and set up your isotropic antenna element. See “Construction”
on page 1-596.

2 Call step to compute the antenna response according to the
properties of phased.IsotropicAntennaElement. The behavior of
step is specific to each object in the toolbox.

Construction H = phased.IsotropicAntennaElement creates an isotropic antenna
system object, H. The object models an antenna element whose response
is 1 in all directions.

H = phased.IsotropicAntennaElement(Name,Value) creates an
isotropic antenna object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties FrequencyRange

Operating frequency range

Specify the antenna element operating frequency range (in Hz) as
a 1-by-2 row vector in the form of [LowerBound HigherBound].
The antenna element has zero response outside the specified
frequency range.

Default: [0 1e20]

BackBaffled

Baffle the back of antenna element

1-596

phased.IsotropicAntennaElement

Set this property to true to baffle the back of the antenna
element. In this case, the antenna responses to all azimuth angles
beyond +/– 90 degrees from the broadside (0 degrees azimuth and
elevation) are 0.

When the value of this property is false, the back of the antenna
element is not baffled.

Default: false

Methods clone Create isotropic antenna object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotResponse Plot response pattern of antenna

release Allow property value and input
characteristics changes

step Output response of antenna
element

Examples Construct an isotropic antenna operating over a frequency range from
800 MHz to 1.2 GHz. The operating frequency is 1 GHz. Find the
response of the antenna at the boresight. Then, plot the polar-pattern
elevation response of the antenna.

ha = phased.IsotropicAntennaElement(...
'FrequencyRange',[800e6 1.2e9]);

fc = 1e9;

1-597

phased.IsotropicAntennaElement

resp = step(ha,fc,[0; 0]);
plotResponse(ha,fc,'RespCut','El','Format','Polar');

See Also phased.ConformalArray | phased.CosineAntennaElement
| phased.CrossedDipoleAntennaElement |
phased.CustomAntennaElement | phased.CustomMicrophoneElement
| phased.OmnidirectionalMicrophoneElement |
phased.ShortDipoleAntennaElement | phased.ULA | phased.URA

1-598

phased.IsotropicAntennaElement.clone

Purpose Create isotropic antenna object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-599

phased.IsotropicAntennaElement.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-600

phased.IsotropicAntennaElement.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-601

phased.IsotropicAntennaElement.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
IsotropicAntennaElement System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-602

phased.IsotropicAntennaElement.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the phased.IsotropicAntennaElement System
object supports polarization. An antenna element supports polarization
if it can create or respond to polarized fields. This object does not
support polarization.

Input
Arguments

h - Isotropic antenna element

Isotropic antenna element specified as a
phased.IsotropicAntennaElement System object.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability returned as a Boolean value true if the
antenna element supports polarization or false if it does not.
Since the phased.IsotropicAntennaElement object does not
support polarization, flag is always returned as false.

Examples Isotropic Antenna Does Not Support Polarization

Determine whether a phased.IsotropicAntennaElement antenna
element supports polarization.

h = phased.IsotropicAntennaElement('FrequencyRange',[1.0,10]*1e9);
isPolarizationCapable(h)

ans =

0

The returned value false (0) shows that the antenna element does
not support polarization.

1-603

phased.IsotropicAntennaElement.plotResponse

Purpose Plot response pattern of antenna

Syntax plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ) plots the element response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency
is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K
row vector. FREQ must lie within the range specified by the
FrequencyVector property of H. If you set the 'RespCut' property
of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same
axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

1-604

phased.IsotropicAntennaElement.plotResponse

Cut angle specified as a scalar. This argument is applicable only
when RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle
must be between –90 and 90. If RespCut is 'El', CutAngle must
be between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

’Polarization’

1-605

phased.IsotropicAntennaElement.plotResponse

Specify the polarization options for plotting the antenna response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

1-606

phased.IsotropicAntennaElement.plotResponse

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’AzimuthAngles’

Azimuth angles for plotting element response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting element response, specified as a row
vector. The ElevationAngles parameter sets the display range
and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When you set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

1-607

phased.IsotropicAntennaElement.plotResponse

Default: [-90:90]

’UGrid’

U coordinate values for plotting element response, specified as
a row vector. The UGrid parameter sets the display range and
resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting element response, specified
as a row vector. The VGrid parameter sets the display range
and resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set the VGrid
and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples Plot Response and Directivity of Isotropic Antenna

This example shows how to plot the response and the directivity of an
isotropic antenna element.

Draw a line plot of an azimuth cut of the response of an isotropic
antenna along 0 degrees elevation. Assume the operating frequency is
1 GHz.

sIso = phased.IsotropicAntennaElement;
plotResponse(sIso,1e9,'Unit','pow');

1-608

phased.IsotropicAntennaElement.plotResponse

Draw an azimuth cut of the antenna directivity.

plotResponse(sIso,1e9,'Unit','dbi');

1-609

phased.IsotropicAntennaElement.plotResponse

Plot Elevation-Cut of Isotropic Antenna Response

Construct an isotropic antenna operating in the frequency range from
800 MHz to 1.2 GHz. Find the response of the antenna at boresight at
1 GHz.

sIso = phased.IsotropicAntennaElement(...
'FrequencyRange',[800e6 1.2e9]);

fc = 1e9;
resp = step(sIso,fc,[0;0])

1-610

phased.IsotropicAntennaElement.plotResponse

resp =

1

Plot the polar-form of the elevation response of the antenna.

plotResponse(sIso,fc,'RespCut','El','Format','Polar');

1-611

phased.IsotropicAntennaElement.plotResponse

Plot 3-D Response

This example shows how to construct an isotropic antenna operating
over a frequency range from 800 MHz to 1.2 GHz and how to plot its
response.

Construct the antenna element.

sIso = phased.IsotropicAntennaElement(...
'FrequencyRange',[0.8e9 1.2e9]);

1-612

phased.IsotropicAntennaElement.plotResponse

Plot the 3-D response of the antenna at 1 GHz from -30 to 30 degrees in
both azimuth and elevation at 0.1 degree increments.

fc = 1e9;
plotResponse(sIso,fc,'RespCut','3D','Format','Polar',...

'Unit','mag','AzimuthAngles',[-30:.1:30],...
'ElevationAngles',[-30:.1:30]);

1-613

phased.IsotropicAntennaElement.plotResponse

See Also uv2azel | azel2uv

1-614

phased.IsotropicAntennaElement.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-615

phased.IsotropicAntennaElement.step

Purpose Output response of antenna element

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the antenna’s voltage response
RESP at operating frequencies specified in FREQ and directions specified
in ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector
of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

1-616

phased.IsotropicAntennaElement.step

Output
Arguments

RESP

Voltage response of antenna element specified as an M-by-L,
complex-valued matrix. In this matrix, M represents the number
of angles specified in ANG while L represents the number of
frequencies specified in FREQ.

Examples Construct an isotropic antenna operating over a frequency range from
800 MHz to 1.2 GHz. The operating frequency is 1 GHz. Find the
response of the antenna at the boresight. Then, plot the polar-pattern
elevation response of the antenna.

ha = phased.IsotropicAntennaElement(...
'FrequencyRange',[800e6 1.2e9]);

fc = 1e9;
resp = step(ha,fc,[0; 0]);
plotResponse(ha,fc,'RespCut','El','Format','Polar');

1-617

phased.IsotropicAntennaElement.step

See Also uv2azel | phitheta2azel

1-618

phased.LCMVBeamformer

Purpose Narrowband LCMV beamformer

Description The LCMVBeamformer object implements a linear constraint minimum
variance beamformer.

To compute the beamformed signal:

1 Define and set up your LCMV beamformer. See “Construction” on
page 1-619.

2 Call step to perform the beamforming operation according to the
properties of phased.LCMVBeamformer. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.LCMVBeamformer creates a linear constraint minimum
variance (LCMV) beamformer System object, H. The object performs
narrowband LCMV beamforming on the received signal.

H = phased.LCMVBeamformer(Name,Value) creates an LCMV
beamformer object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties Constraint

Constraint matrix

Specify the constraint matrix used for LCMV beamforming as an
N-by-K matrix. Each column of the matrix is a constraint and N
is the number of elements in the sensor array.

Default: [1; 1]

DesiredResponse

Desired response vector

Specify the desired response used for LCMV beamforming as a
column vector of length K, where K is the number of constraints in
the Constraint property. Each element in the vector defines the

1-619

phased.LCMVBeamformer

desired response of the constraint specified in the corresponding
column of the Constraint property.

Default: 1, which corresponds to a distortionless response

DiagonalLoadingFactor

Diagonal loading factor

Specify the diagonal loading factor as a positive scalar. Diagonal
loading is a technique used to achieve robust beamforming
performance, especially when the sample support is small. This
property is tunable.

Default: 0

TrainingInputPort

Add input to specify training data

To specify additional training data, set this property to true and
use the corresponding input argument when you invoke step.
To use the input signal as the training data, set this property to
false.

Default: false

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

1-620

phased.LCMVBeamformer

Methods clone Create LCMV beamformer object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform LCMV beamforming

Examples Apply an LCMV beamformer to a 5-element ULA, preserving the signal
from the desired direction.

% Simulate signal
t = (0:1000)';
x = sin(2*pi*0.01*t);
c = 3e8; Fc = 3e8;
incidentAngle = [45; 0];
ha = phased.ULA('NumElements',5);
x = collectPlaneWave(ha,x,incidentAngle,Fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

% Beamforming
hstv = phased.SteeringVector('SensorArray',ha,...

'PropagationSpeed',c);
hbf = phased.LCMVBeamformer;
hbf.Constraint = step(hstv,Fc,incidentAngle);
hbf.DesiredResponse = 1;
y = step(hbf, rx);

1-621

phased.LCMVBeamformer

% Plot
plot(t,real(rx(:,3)),'r:',t,real(y));
xlabel('Time'); ylabel('Amplitude');
legend('Original','Beamformed');

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

1-622

phased.LCMVBeamformer

See Also phased.MVDRBeamformer | phased.PhaseShiftBeamformer |
phased.TimeDelayLCMVBeamformer

Concepts • “Adaptive Beamforming”

1-623

phased.LCMVBeamformer.clone

Purpose Create LCMV beamformer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-624

phased.LCMVBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-625

phased.LCMVBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-626

phased.LCMVBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
LCMVBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-627

phased.LCMVBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-628

phased.LCMVBeamformer.step

Purpose Perform LCMV beamforming

Syntax Y = step(H,X)
Y = step(H,X,XT)
[Y,W] = step(___)

Description Y = step(H,X) performs LCMV beamforming on the input, X, and
returns the beamformed output in Y. X is an M-by-N matrix where N
is the number of elements of the sensor array. Y is a column vector
of length M.

Y = step(H,X,XT) uses XT as the training samples to calculate the
beamforming weights. This syntax is available when you set the
TrainingInputPort property to true. XT is a P-by-N matrix, where N is
the number of elements of the sensor array. P must be greater than N.

[Y,W] = step(___) returns the beamforming weights W. This syntax
is available when you set the WeightsOutputPort property to true. W
is a column vector of length N, where N is the number of elements in
the sensor array.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Apply an LCMV beamformer to a 5-element ULA, preserving the signal
from the desired direction.

% Simulate signal
t = (0:1000)';
x = sin(2*pi*0.01*t);
c = 3e8; Fc = 3e8;

1-629

phased.LCMVBeamformer.step

incidentAngle = [45; 0];
ha = phased.ULA('NumElements',5);
x = collectPlaneWave(ha,x,incidentAngle,Fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

% Beamforming
hstv = phased.SteeringVector('SensorArray',ha,...

'PropagationSpeed',c);
hbf = phased.LCMVBeamformer;
hbf.Constraint = step(hstv,Fc,incidentAngle);
hbf.DesiredResponse = 1;
y = step(hbf, rx);

1-630

phased.LinearFMWaveform

Purpose Linear FM pulse waveform

Description The LinearFMWaveform object creates a linear FM pulse waveform.

To obtain waveform samples:

1 Define and set up your linear FM waveform. See “Construction” on
page 1-631.

2 Call step to generate the linear FM waveform samples according to
the properties of phased.LinearFMWaveform. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.LinearFMWaveform creates a linear FM pulse waveform
System object, H. The object generates samples of a linear FM pulse
waveform.

H = phased.LinearFMWaveform(Name,Value) creates a linear FM
pulse waveform object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The quantity
(SampleRate ./ PRF) is a scalar or vector that must contain only
integers. The default value of this property corresponds to 1 MHz.

Default: 1e6

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar.
The value must satisfy PulseWidth <= 1./PRF.

Default: 50e-6

1-631

phased.LinearFMWaveform

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (in hertz) as a scalar or a
row vector. The default value of this property corresponds to 10
kHz.

To implement a constant PRF, specify PRF as a positive scalar.
To implement a staggered PRF, specify PRF as a row vector with
positive elements. When PRF is a vector, the output pulses use
successive elements of the vector as the PRF. If the last element
of the vector is reached, the process continues cyclically with the
first element of the vector.

The value of this property must satisfy these constraints:

• PRF is less than or equal to (1/PulseWidth).

• (SampleRate ./ PRF) is a scalar or vector that contains only
integers.

Default: 1e4

SweepBandwidth

FM sweep bandwidth

Specify the bandwidth of the linear FM sweeping (in hertz) as a
positive scalar. The default value corresponds to 100 kHz.

Default: 1e5

SweepDirection

FM sweep direction

Specify the direction of the linear FM sweep as one of 'Up' or
'Down'.

Default: 'Up'

1-632

phased.LinearFMWaveform

SweepInterval

Location of FM sweep interval

If you set this property value to 'Positive', the waveform sweeps
in the interval between 0 and B, where B is the SweepBandwidth
property value. If you set this property value to 'Symmetric', the
waveform sweeps in the interval between –B/2 and B/2.

Default: 'Positive'

Envelope

Envelope function

Specify the envelope function as one of 'Rectangular' or
'Gaussian’.

Default: 'Rectangular'

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Pulses'
or 'Samples'. When you set the OutputFormat property to
'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the
NumPulses property.

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property.

Default: 'Pulses'

NumSamples

Number of samples in output

1-633

phased.LinearFMWaveform

Specify the number of samples in the output of the step method
as a positive integer. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as
a positive integer. This property applies only when you set the
OutputFormat property to 'Pulses'.

Default: 1

Methods bandwidth Bandwidth of linear FMwaveform

clone Create linear FM waveform object
with same property values

getMatchedFilter Matched filter coefficients for
waveform

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

getStretchProcessor Create stretch processor for
waveform

isLocked Locked status for input attributes
and nontunable properties

plot Plot linear FM pulse waveform

release Allow property value and input
characteristics changes

1-634

phased.LinearFMWaveform

reset Reset states of the linear FM
waveform object

step Samples of linear FM pulse
waveform

Examples Create and plot an upsweep linear FM pulse waveform.

hw = phased.LinearFMWaveform('SweepBandwidth',1e5,...
'PulseWidth',1e-4);

plot(hw);

1-635

phased.LinearFMWaveform

References [1] Levanon, N. and E. Mozeson. Radar Signals. Hoboken, NJ: John
Wiley & Sons, 2004.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also phased.RectangularWaveform | phased.SteppedFMWaveform |
phased.PhaseCodedWaveform

1-636

phased.LinearFMWaveform

Related
Examples

• Waveform Analysis Using the Ambiguity Function

1-637

../examples/waveform-analysis-using-the-ambiguity-function.html

phased.LinearFMWaveform.bandwidth

Purpose Bandwidth of linear FM waveform

Syntax BW = bandwidth(H)

Description BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses for
the linear FM pulse waveform H. The bandwidth equals the value of the
SweepBandwidth property.

Input
Arguments

H

Linear FM pulse waveform object.

Output
Arguments

BW

Bandwidth of the pulses, in hertz.

Examples Determine the bandwidth of a linear FM pulse waveform.

H = phased.LinearFMWaveform;
bw = bandwidth(H)

1-638

phased.LinearFMWaveform.clone

Purpose Create linear FM waveform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-639

phased.LinearFMWaveform.getMatchedFilter

Purpose Matched filter coefficients for waveform

Syntax Coeff = getMatchedFilter(H)

Description Coeff = getMatchedFilter(H) returns the matched filter coefficients
for the linear FM waveform object H. Coeff is a column vector.

Examples Get the matched filter coefficients for a linear FM pulse.

hwav = phased.LinearFMWaveform('PulseWidth',5e-05,...
'SweepBandwidth',1e5,'OutputFormat','Pulses');

coeff = getMatchedFilter(hwav);
stem(real(coeff));
title('Matched filter coefficients, real part');

1-640

phased.LinearFMWaveform.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-641

phased.LinearFMWaveform.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-642

phased.LinearFMWaveform.getStretchProcessor

Purpose Create stretch processor for waveform

Syntax HS = getStretchProcessor(H)
HS = getStretchProcessor(H,refrng)
HS = getStretchProcessor(H,refrng,rngspan)
HS = getStretchProcessor(H,refrng,rngspan,v)

Description HS = getStretchProcessor(H) returns the stretch processor for the
waveform, H. HS is set up so the reference range corresponds to 1/4 of the
maximum unambiguous range of a pulse. The range span corresponds
to 1/10 of the distance traveled by the wave within the pulse width. The
propagation speed is the speed of light.

HS = getStretchProcessor(H,refrng) specifies the reference range.

HS = getStretchProcessor(H,refrng,rngspan) specifies the range
span. The reference interval is centered at refrng.

HS = getStretchProcessor(H,refrng,rngspan,v) specifies the
propagation speed.

Input
Arguments

H

Linear FM pulse waveform object.

refrng

Reference range, in meters, as a positive scalar.

Default: 1/4 of the maximum unambiguous range of a pulse

rngspan

Length of the interval of ranges of interest, in meters, as a positive
scalar. The center of the interval is the range value specified in
the refrng argument.

Default: 1/10 of the distance traveled by the wave within the
pulse width

1-643

phased.LinearFMWaveform.getStretchProcessor

v

Propagation speed, in meters per second, as a positive scalar.

Default: Speed of light

Output
Arguments

HS

Stretch processor as a phased.StretchProcessor System object.

Examples Detection of Target Using Stretch Processing

Use stretch processing to locate a target at a range of 4950 m.

Simulate the signal.

hwav = phased.LinearFMWaveform;
x = step(hwav);
c = 3e8; r = 4950;
num_sample = r/(c/(2*hwav.SampleRate));
x = circshift(x,num_sample);

Perform stretch processing.

hs = getStretchProcessor(hwav,5000,200,c);
y = step(hs,x);

Plot the spectrum of the resulting signal.

[Pxx,F] = periodogram(y,[],2048,hs.SampleRate,'centered');
plot(F/1000,10*log10(Pxx)); grid;
xlabel('Frequency (kHz)');
ylabel('Power/Frequency (dB/Hz)');
title('Periodogram Power Spectrum Density Estimate');

1-644

phased.LinearFMWaveform.getStretchProcessor

Detect the range.

[~,rngidx] = findpeaks(pow2db(Pxx/max(Pxx)),...
'MinPeakHeight',-5);

rngfreq = F(rngidx);
re = stretchfreq2rng(rngfreq,hs.SweepSlope,...

hs.ReferenceRange,c);

See Also phased.StretchProcessor | stretchfreq2rng

1-645

phased.LinearFMWaveform.getStretchProcessor

Related
Examples

• Range Estimation Using Stretch Processing

Concepts • “Stretch Processing”

1-646

../examples/range-estimation-using-stretch-processing.html

phased.LinearFMWaveform.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
LinearFMWaveform System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-647

phased.LinearFMWaveform.plot

Purpose Plot linear FM pulse waveform

Syntax plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot(___)

Description plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options
specified by one or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line
style, or marker options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input
Arguments

Hwav

Waveform object. This variable must be a scalar that represents a
single waveform object.

LineSpec

String that specifies the same line color, style, or marker options
as are available in the MATLAB plot function. If you specify a
PlotType value of 'complex', then LineSpec applies to both the
real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’PlotType’

1-648

phased.LinearFMWaveform.plot

Specifies whether the function plots the real part, imaginary part,
or both parts of the waveform. Valid values are 'real', 'imag',
and 'complex'.

Default: 'real'

’PulseIdx’

Index of the pulse to plot. This value must be a scalar.

Default: 1

Output
Arguments

h

Handle to the line or lines in the figure. For a PlotType value of
'complex', h is a column vector. The first and second elements of
this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples Create and plot an upsweep linear FM pulse waveform.

hw = phased.LinearFMWaveform('SweepBandwidth',1e5,...
'PulseWidth',1e-4);

plot(hw);

1-649

phased.LinearFMWaveform.plot

1-650

phased.LinearFMWaveform.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-651

phased.LinearFMWaveform.reset

Purpose Reset states of the linear FM waveform object

Syntax reset(H)

Description reset(H) resets the states of the LinearFMWaveform object, H.
Afterward, if the PRF property is a vector, the next call to step uses
the first PRF value in the vector.

1-652

phased.LinearFMWaveform.step

Purpose Samples of linear FM pulse waveform

Syntax Y = step(H)

Description Y = step(H) returns samples of the linear FM pulse in a column vector
Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Construct a linear FM waveform with a sweep bandwidth of 300 kHz, a
sample rate of 1 MHz, a pulse width of 50 microseconds, and a pulse
repetition frequency of 10 kHz.

hfmwav = phased.LinearFMWaveform('SweepBandwidth',3e5,...
'OutputFormat','Pulses','SampleRate',1e6,...
'PulseWidth',50e-6,'PRF',1e4);

% use step method to obtain the linear FM waveform
wav = step(hfmwav);

1-653

phased.MatchedFilter

Purpose Matched filter

Description The MatchedFilter object implements matched filtering of an input
signal.

To compute the matched filtered signal:

1 Define and set up your matched filter. See “Construction” on page
1-654.

2 Call step to perform the matched filtering according to the properties
of phased.MatchedFilter. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.MatchedFilter creates a matched filter System object, H.
The object performs matched filtering on the input data.

H = phased.MatchedFilter(Name,Value) creates a matched filter
object, H, with each specified property Name set to the specified Value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties CoefficientsSource

Source of matched filter coefficients

Specify whether the matched filter coefficients come from the
Coefficients property of this object or from an input argument
in step. Values of this property are:

'Property' The Coefficients property of this
object specifies the coefficients.

'Input port' An input argument in each invocation
of step specifies the coefficients.

Default: 'Property'

Coefficients

1-654

phased.MatchedFilter

Matched filter coefficients

Specify the matched filter coefficients as a column vector. This
property applies when you set the CoefficientsSource property
to 'Property'. This property is tunable.

Default: [1;1]

SpectrumWindow

Window for spectrum weighting

Specify the window used for spectrum weighting using one of
'None', 'Hamming', 'Chebyshev', 'Hann', 'Kaiser', 'Taylor',
or 'Custom'. Spectrum weighting is often used with linear FM
waveform to reduce the sidelobes in the time domain. The object
computes the window length internally, to match the FFT length.

Default: 'None'

CustomSpectrumWindow

User-defined window for spectrum weighting

Specify the user-defined window for spectrum weighting using a
function handle or a cell array. This property applies when you
set the SpectrumWindow property to 'Custom'.

If CustomSpectrumWindow is a function handle, the specified
function takes the window length as the input and generates
appropriate window coefficients.

If CustomSpectrumWindow is a cell array, then the first cell must
be a function handle. The specified function takes the window
length as the first input argument, with other additional input
arguments if necessary, and generates appropriate window
coefficients. The remaining entries in the cell array are the
additional input arguments to the function, if any.

Default: @hamming

1-655

phased.MatchedFilter

SpectrumRange

Spectrum window coverage region

Specify the spectrum region on which the spectrum
window is applied as a 1-by-2 vector in the form of
[StartFrequency EndFrequency] (in hertz). This property
applies when you set the SpectrumWindow property to a value
other than 'None'.

Note that both StartFrequency and EndFrequency are measured
in baseband. That is, they are within [-Fs/2 Fs/2], where Fs is
the sample rate that you specify in the SampleRate property.
StartFrequency cannot be larger than EndFrequency.

Default: [0 1e5]

SampleRate

Coefficient sample rate

Specify the matched filter coefficients sample rate (in hertz)
as a positive scalar. This property applies when you set the
SpectrumWindow property to a value other than 'None'.

Default: 1e6

SidelobeAttenuation

Window sidelobe attenuation level

Specify the sidelobe attenuation level (in decibels) of a Chebyshev
or Taylor window as a positive scalar. This property applies
when you set the SpectrumWindow property to 'Chebyshev' or
'Taylor'.

Default: 30

Beta

Kaiser window parameter

1-656

phased.MatchedFilter

Specify the parameter that affects the Kaiser window sidelobe
attenuation as a nonnegative scalar. Please refer to kaiser
for more details. This property applies when you set the
SpectrumWindow property to 'Kaiser'.

Default: 0.5

Nbar

Number of nearly constant sidelobes in Taylor window

Specify the number of nearly constant level sidelobes adjacent
to the mainlobe in a Taylor window as a positive integer. This
property applies when you set the SpectrumWindow property to
'Taylor'.

Default: 4

GainOutputPort

Output gain

To obtain the matched filter gain, set this property to true and
use the corresponding output argument when invoking step.
If you do not want to obtain the matched filter gain, set this
property to false.

Default: false

Methods clone Create matched filter object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

1-657

phased.MatchedFilter

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform matched filtering

Examples Construct a matched filter for a linear FM waveform.

hw = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3);
x = step(hw);
hmf = phased.MatchedFilter(...

'Coefficients',getMatchedFilter(hw));
y = step(hmf,x);
subplot(211),plot(real(x));
xlabel('Samples'); ylabel('Amplitude');
title('Input Signal');
subplot(212),plot(real(y));
xlabel('Samples'); ylabel('Amplitude');
title('Matched Filter Output');

1-658

phased.MatchedFilter

Apply the matched filter, using a Hamming window to do spectrum
weighting.

hw = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3);

1-659

phased.MatchedFilter

x = step(hw);
hmf = phased.MatchedFilter(...

'Coefficients',getMatchedFilter(hw),...
'SpectrumWindow','Hamming');

y = step(hmf,x);
subplot(211),plot(real(x));
xlabel('Samples'); ylabel('Amplitude');
title('Input Signal');
subplot(212),plot(real(y));
xlabel('Samples'); ylabel('Amplitude');
title('Matched Filter Output');

1-660

phased.MatchedFilter

Apply the matched filter, using a custom Gaussian window for spectrum
weighting.

hw = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3);

1-661

phased.MatchedFilter

x = step(hw);
hmf = phased.MatchedFilter(...

'Coefficients',getMatchedFilter(hw),...
'SpectrumWindow','Custom',...
'CustomSpectrumWindow',{@gausswin,2.5});

y = step(hmf,x);
subplot(211),plot(real(x));
xlabel('Samples'); ylabel('Amplitude');
title('Input Signal');
subplot(212),plot(real(y));
xlabel('Samples'); ylabel('Amplitude');
title('Matched Filter Output');

1-662

phased.MatchedFilter

Algorithms The filtering operation uses the overlap-add method.

Spectrum weighting produces a transfer function

1-663

phased.MatchedFilter

H F w F H F’() () ()

where w(F) is the window and H(F) is the original transfer function.

For further details on matched filter theory, see [1]or [2].

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also phased.CFARDetector | pulsint | phased.StretchProcessor |
phased.TimeVaryingGain | taylorwin

1-664

phased.MatchedFilter.clone

Purpose Create matched filter object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-665

phased.MatchedFilter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-666

phased.MatchedFilter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-667

phased.MatchedFilter.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the MatchedFilter
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-668

phased.MatchedFilter.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-669

phased.MatchedFilter.step

Purpose Perform matched filtering

Syntax Y = step(H,X)
Y = step(H,X,COEFF)
[Y,GAIN] = step(___)

Description Y = step(H,X) applies the matched filtering to the input X and returns
the filtered result in Y. The filter is applied along the first dimension.
Y and X have the same dimensions. The initial transient is removed
from the filtered result.

Y = step(H,X,COEFF) uses the input COEFF as the matched
filter coefficients. This syntax is available when you set the
CoefficientsSource property to 'Input port'.

[Y,GAIN] = step(___) returns additional output GAIN as the gain (in
decibels) of the matched filter. This syntax is available when you set
the GainOutputPort property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Construct a linear FM waveform with a sweep bandwidth of 300 kHz
and a pulse width of 50 microseconds. Obtain the matched filter
coefficients using the getMatchedFilter method. Use the step method
for phased.MatchedFilter to obtain the matched filter output.

hfmwav = phased.LinearFMWaveform('SweepBandwidth',3e5,...
'OutputFormat','Pulses','SampleRate',1e6,...
'PulseWidth',50e-6,'PRF',1e4);

% use step method of phased.LinearFMWaveform

1-670

phased.MatchedFilter.step

% to obtain the linear FM waveform
wav = step(hfmwav);
% get matched filter coefficients for linear FM waveform
mfcoeffs = getMatchedFilter(hfmwav);
hmf = phased.MatchedFilter('Coefficients',mfcoeffs);
% use step method of phased.MatchedFilter to obtain matched filter
% output
mfoutput = step(hmf,wav);

1-671

phased.MVDRBeamformer

Purpose Narrowband MVDR (Capon) beamformer

Description The MVDRBeamformer object implements a minimum variance
distortionless response beamformer. This is also referred to as a Capon
beamformer.

To compute the beamformed signal:

1 Define and set up your MVDR beamformer. See “Construction” on
page 1-672.

2 Call step to perform the beamforming operation according to the
properties of phased.MVDRBeamformer. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.MVDRBeamformer creates a minimum variance
distortionless response (MVDR) beamformer System object, H. The
object performs MVDR beamforming on the received signal.

H = phased.MVDRBeamformer(Name,Value) creates an MVDR
beamformer object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Sensor array

Sensor array specified as an array System object belonging to the
phased package. A sensor array can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-672

phased.MVDRBeamformer

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the beamformer in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

DiagonalLoadingFactor

Diagonal loading factor

Specify the diagonal loading factor as a positive scalar. Diagonal
loading is a technique used to achieve robust beamforming
performance, especially when the sample support is small. This
property is tunable.

Default: 0

TrainingInputPort

Add input to specify training data

To specify additional training data, set this property to true and
use the corresponding input argument when you invoke step.
To use the input signal as the training data, set this property to
false.

Default: false

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction for the beamformer
comes from the Direction property of this object or from an
input argument in step. Values of this property are:

1-673

phased.MVDRBeamformer

'Property' The Direction property of this object
specifies the beamforming direction.

'Input port' An input argument in each invocation
of step specifies the beamforming
direction.

Default: 'Property'

Direction

Beamforming directions

Specify the beamforming directions of the beamformer as a
two-row matrix. Each column of the matrix has the form
[AzimuthAngle; ElevationAngle] (in degrees). Each azimuth angle
must be between –180 and 180 degrees, and each elevation angle
must be between –90 and 90 degrees. This property applies when
you set the DirectionSource property to 'Property'.

Default: [0; 0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

Methods clone Create MVDR beamformer object
with same property values

getNumInputs Number of expected inputs to
step method

1-674

phased.MVDRBeamformer

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform MVDR beamforming

Examples Apply an MVDR beamformer to a 5-element ULA. The incident angle of
the signal is 45 degrees in azimuth and 0 degree in elevation.

% Signal simulation
t = (0:1000)';
x = sin(2*pi*0.01*t);
c = 3e8; Fc = 3e8;
incidentAngle = [45; 0];
ha = phased.ULA('NumElements',5);
x = collectPlaneWave(ha,x,incidentAngle,Fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x+noise;

% Beamforming
hbf = phased.MVDRBeamformer('SensorArray',ha,...

'PropagationSpeed',c,'OperatingFrequency',Fc,...
'Direction',incidentAngle,'WeightsOutputPort',true);

[y,w] = step(hbf,rx);

% Plot signals
plot(t,real(rx(:,3)),'r:',t,real(y));
xlabel('Time'); ylabel('Amplitude');
legend('Original','Beamformed');

% Plot response pattern
figure;
plotResponse(ha,Fc,c,'Weights',w);

1-675

phased.MVDRBeamformer

1-676

phased.MVDRBeamformer

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.FrostBeamformer | phased.PhaseShiftBeamformer |
phased.LCMVBeamformer | uv2azel | phitheta2azel

1-677

phased.MVDRBeamformer.clone

Purpose Create MVDR beamformer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-678

phased.MVDRBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-679

phased.MVDRBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-680

phased.MVDRBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
MVDRBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-681

phased.MVDRBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-682

phased.MVDRBeamformer.step

Purpose Perform MVDR beamforming

Syntax Y = step(H,X)
Y = step(H,X,XT)
Y = step(H,X,ANG)
Y = step(H,X,XT,ANG)
[Y,W] = step(___)

Description Y = step(H,X) performs MVDR beamforming on the input, X, and
returns the beamformed output in Y. This syntax uses X as the training
samples to calculate the beamforming weights.

Y = step(H,X,XT) uses XT as the training samples to calculate the
beamforming weights. This syntax is available when you set the
TrainingInputPort property to true.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This
syntax is available when you set the DirectionSource property to
'Input port'.

Y = step(H,X,XT,ANG) combines all input arguments. This syntax is
available when you set the TrainingInputPort property to true and
set the DirectionSource property to 'Input port'.

[Y,W] = step(___) returns the beamforming weights, W. This syntax
is available when you set the WeightsOutputPort property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

1-683

phased.MVDRBeamformer.step

Input
Arguments

H

Beamformer object.

X

Input signal, specified as an M-by-N matrix. If the sensor array
contains subarrays, N is the number of subarrays; otherwise, N
is the number of elements. If you set the TrainingInputPort to
false, M must be larger than N; otherwise,M can be any positive
integer.

XT

Training samples, specified as a P-by-N matrix. If the sensor
array contains subarrays, N is the number of subarrays;
otherwise, N is the number of elements. P must be larger than N.

ANG

Beamforming directions, specified as a two-row matrix. Each
column has the form [AzimuthAngle; ElevationAngle], in degrees.
Each azimuth angle must be between –180 and 180 degrees, and
each elevation angle must be between –90 and 90 degrees.

Output
Arguments

Y

Beamformed output. Y is an M-by-L matrix, where M is the
number of rows of X and L is the number of beamforming
directions.

W

Beamforming weights. W is an N-by-L matrix, where L is the
number of beamforming directions. If the sensor array contains
subarrays, N is the number of subarrays; otherwise, N is the
number of elements.

Examples Apply an MVDR beamformer to a 5-element ULA. The incident angle of
the signal is 45 degrees in azimuth and 0 degree in elevation.

% Signal simulation

1-684

phased.MVDRBeamformer.step

t = (0:1000)';
x = sin(2*pi*0.01*t);
c = 3e8; Fc = 3e8;
incidentAngle = [45; 0];
ha = phased.ULA('NumElements',5);
x = collectPlaneWave(ha,x,incidentAngle,Fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x+noise;

% Beamforming
hbf = phased.MVDRBeamformer('SensorArray',ha,...

'PropagationSpeed',c,'OperatingFrequency',Fc,...
'Direction',incidentAngle,'WeightsOutputPort',true);

[y,w] = step(hbf,rx);

See Also uv2azel | phitheta2azel

1-685

phased.MVDREstimator

Purpose MVDR (Capon) spatial spectrum estimator for ULA

Description The MVDREstimator object computes a minimum variance distortionless
response (MVDR) spatial spectrum estimate for a uniform linear array.
This DOA estimator is also referred to as a Capon DOA estimator.

To estimate the spatial spectrum:

1 Define and set up your MVDR spatial spectrum estimator. See
“Construction” on page 1-686.

2 Call step to estimate the spatial spectrum according to the properties
of phased.MVDREstimator. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.MVDREstimator creates an MVDR spatial spectrum
estimator System object, H. The object estimates the incoming signal’s
spatial spectrum using a narrowband MVDR beamformer for a uniform
linear array (ULA).

H = phased.MVDREstimator(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-686

phased.MVDREstimator

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to
estimate the covariance matrix as a nonnegative integer. Each
additional smoothing handles one extra coherent source, but
reduces the effective number of element by 1. The maximum
value of this property is M–2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

ScanAngles

Scan angles

Specify the scan angles (in degrees) as a real vector. The angles
are broadside angles and must be between –90 and 90, inclusive.
You must specify the angles in ascending order.

1-687

phased.MVDREstimator

Default: -90:90

DOAOutputPort

Enable DOA output

To obtain the signal’s direction of arrival (DOA), set this property
to true and use the corresponding output argument when
invoking step. If you do not want to obtain the DOA, set this
property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a
positive scalar integer. This property applies when you set the
DOAOutputPort property to true.

Default: 1

Methods clone Create MVDR spatial spectrum
estimator object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotSpectrum Plot spatial spectrum

release Allow property value and input
characteristics changes

1-688

phased.MVDREstimator

reset Reset states of MVDR spatial
spectrum estimator object

step Perform spatial spectrum
estimation

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing of 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 60 degrees in azimuth and –5 degrees in elevation. This example also
plots the spatial spectrum.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
% additive noise
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
% construct MVDR estimator object
hdoa = phased.MVDREstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

% use the MVDREstimator step method to obtain the DOA estimates
[y,doas] = step(hdoa,x+noise);
doas = broadside2az(sort(doas),[20 -5]);
plotSpectrum(hdoa);

1-689

phased.MVDREstimator

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also broadside2az | phased.MVDREstimator2D

1-690

phased.MVDREstimator.clone

Purpose Create MVDR spatial spectrum estimator object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-691

phased.MVDREstimator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-692

phased.MVDREstimator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-693

phased.MVDREstimator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the MVDREstimator
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-694

phased.MVDREstimator.plotSpectrum

Purpose Plot spatial spectrum

Syntax plotSpectrum(H)
plotSpectrum(H,Name,Value)
h = plotSpectrum(___)

Description plotSpectrum(H) plots the spatial spectrum resulting from the last call
of the step method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with
additional options specified by one or more Name,Value pair
arguments.

h = plotSpectrum(___) returns the line handle in the figure.

Input
Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’NormalizeResponse’

Set this value to true to plot the normalized spectrum. Set this
value to false to plot the spectrum without normalizing it.

Default: false

’Title’

String to use as title of figure.

Default: Empty string

1-695

phased.MVDREstimator.plotSpectrum

’Unit’

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing of 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 60 degrees in azimuth and –5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
% additive noise
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
% construct MVDR estimator object
hdoa = phased.MVDREstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

% use the MVDREstimator step method to obtain the DOA estimates
[y,doas] = step(hdoa,x+noise);
doas = broadside2az(sort(doas),[20 -5]);
plotSpectrum(hdoa);

1-696

phased.MVDREstimator.plotSpectrum

1-697

phased.MVDREstimator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-698

phased.MVDREstimator.reset

Purpose Reset states of MVDR spatial spectrum estimator object

Syntax reset(H)

Description reset(H) resets the states of the MVDREstimator object, H.

1-699

phased.MVDREstimator.step

Purpose Perform spatial spectrum estimation

Syntax Y = step(H,X)
[Y,ANG] = step(H,X)

Description Y = step(H,X) estimates the spatial spectrum from X using the
estimator H. X is a matrix whose columns correspond to channels. Y is
a column vector representing the magnitude of the estimated spatial
spectrum.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s
direction of arrival (DOA) when the DOAOutputPort property is true.
ANG is a row vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing of 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 60 degrees in azimuth and –5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
% additive noise

1-700

phased.MVDREstimator.step

noise = 0.1*(randn(size(x))+1i*randn(size(x)));
% construct MVDR estimator object
hdoa = phased.MVDREstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

% use the MVDREstimator step method to obtain the DOA estimates
[y,doas] = step(hdoa,x+noise);
doas = broadside2az(sort(doas),[20 -5]);

1-701

phased.MVDREstimator2D

Purpose 2-D MVDR (Capon) spatial spectrum estimator

Description The MVDREstimator2D object computes a 2-D minimum variance
distortionless response (MVDR) spatial spectrum estimate. This DOA
estimator is also referred to as a Capon estimator.

To estimate the spatial spectrum:

1 Define and set up your 2-D MVDR spatial spectrum estimator. See
“Construction” on page 1-702.

2 Call step to estimate the spatial spectrum according to the properties
of phased.MVDREstimator2D. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.MVDREstimator2D creates a 2-D MVDR spatial spectrum
estimator System object, H. The object estimates the signal’s spatial
spectrum using a narrowband MVDR beamformer.

H = phased.MVDREstimator2D(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-702

phased.MVDREstimator2D

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

AzimuthScanAngles

Azimuth scan angles (degrees)

Specify the azimuth scan angles (in degrees) as a real vector. The
angles must be between –180 and 180, inclusive. You must specify
the angles in ascending order.

Default: -90:90

ElevationScanAngles

Elevation scan angles

Specify the elevation scan angles (in degrees) as a real vector or
scalar. The angles must be between –90 and 90, inclusive. You
must specify the angles in ascending order.

Default: 0

1-703

phased.MVDREstimator2D

DOAOutputPort

Enable DOA output

To obtain the signal’s direction of arrival (DOA), set this property
to true and use the corresponding output argument when
invoking step. If you do not want to obtain the DOA, set this
property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a
positive scalar integer. This property applies when you set the
DOAOutputPort property to true.

Default: 1

Methods clone Create 2-D MVDR spatial
spectrum estimator object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotSpectrum Plot spatial spectrum

release Allow property value and input
characteristics changes

1-704

phased.MVDREstimator2D

reset Reset states of 2-D MVDR spatial
spectrum estimator object

step Perform spatial spectrum
estimation

Examples Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is –37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees
in azimuth and 20 degrees in elevation. This example also plots the
spatial spectrum.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[-37 0;17 20]',fc);
% additive noise
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
% construct MVDR DOA estimator for URA
hdoa = phased.MVDREstimator2D('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

% use the step method to obtain the output and DOA estimates
[~,doas] = step(hdoa,x+noise);
plotSpectrum(hdoa);

1-705

phased.MVDREstimator2D

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.MVDREstimator | uv2azel | phitheta2azel

1-706

phased.MVDREstimator2D.clone

Purpose Create 2-D MVDR spatial spectrum estimator object with same
property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-707

phased.MVDREstimator2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-708

phased.MVDREstimator2D.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-709

phased.MVDREstimator2D.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
MVDREstimator2D System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-710

phased.MVDREstimator2D.plotSpectrum

Purpose Plot spatial spectrum

Syntax plotSpectrum(H)
plotSpectrum(H,Name,Value)
h = plotSpectrum(___)

Description plotSpectrum(H) plots the spatial spectrum resulting from the last call
of the step method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with
additional options specified by one or more Name,Value pair
arguments.

h = plotSpectrum(___) returns the line handle in the figure.

Input
Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’NormalizeResponse’

Set this value to true to plot the normalized spectrum. Set this
value to false to plot the spectrum without normalizing it.

Default: false

’Title’

String to use as title of figure.

Default: Empty string

1-711

phased.MVDREstimator2D.plotSpectrum

’Unit’

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is –37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees in
azimuth and 20 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[-37 0;17 20]',fc);
% additive noise
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
% construct MVDR DOA estimator for URA
hdoa = phased.MVDREstimator2D('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

% use the step method to obtain the output and DOA estimates
[~,doas] = step(hdoa,x+noise);
plotSpectrum(hdoa);

1-712

phased.MVDREstimator2D.plotSpectrum

1-713

phased.MVDREstimator2D.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-714

phased.MVDREstimator2D.reset

Purpose Reset states of 2-D MVDR spatial spectrum estimator object

Syntax reset(H)

Description reset(H) resets the states of the MVDREstimator2D object, H.

1-715

phased.MVDREstimator2D.step

Purpose Perform spatial spectrum estimation

Syntax Y = step(H,X)
[Y,ANG] = step(H,X)

Description Y = step(H,X) estimates the spatial spectrum from X using the
estimator H. X is a matrix whose columns correspond to channels. Y
is a matrix representing the magnitude of the estimated 2-D spatial
spectrum. The row dimension of Y is equal to the number of angles in
the ElevationScanAngles and the column dimension of Y is equal to
the number of angles in the AzimuthScanAngles property.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s
direction of arrival (DOA) when the DOAOutputPort property is true.
ANG is a two-row matrix where the first row represents estimated
azimuth and the second row represents estimated elevation (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is –37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees in
azimuth and 20 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
ha.Element.FrequencyRange = [100e6 300e6];

1-716

phased.MVDREstimator2D.step

fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[-37 0;17 20]',fc);
% additive noise
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
% construct MVDR DOA estimator for URA
hdoa = phased.MVDREstimator2D('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

% use the step method to obtain the output and DOA estimates
[~,doas] = step(hdoa,x+noise);

See Also azel2uv | azel2phitheta

1-717

phased.OmnidirectionalMicrophoneElement

Purpose Omnidirectional microphone

Description The OmnidirectionalMicrophoneElement object models an
omnidirectional microphone with an equal response in all directions.

To compute the response of the microphone element for specified
directions:

1 Define and set up your omnidirectional microphone element. See
“Construction” on page 1-718.

2 Call step to estimate the microphone response according to the
properties of phased.OmnidirectionalMicrophoneElement. The
behavior of step is specific to each object in the toolbox.

Construction H = phased.OmnidirectionalMicrophoneElement creates an
omnidirectional microphone system object, H, that models an
omnidirectional microphone element whose response is 1 in all
directions.

H = phased.OmnidirectionalMicrophoneElement(Name,Value)
creates an omnidirectional microphone object, H, with each
specified property set to the specified value. You can specify
additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties FrequencyRange

Operating frequency range

Specify the operating frequency range (in Hz) of the microphone
element as a 1x2 row vector in the form of [LowerBound
HigherBound]. The microphone element has no response outside
the specified frequency range.

Default: [0 1e20]

BackBaffled

1-718

phased.OmnidirectionalMicrophoneElement

Baffle the back of microphone element

Set this property to true to baffle the back of the microphone
element. In this case, the microphone responses to all azimuth
angles beyond +/– 90 degrees from the broadside (0 degree
azimuth and elevation) are 0.

When the value of this property is false, the back of the
microphone element is not baffled.

Default: false

Methods clone Create omnidirectional
microphone object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotResponse Plot response pattern of
microphone

release Allow property value and input
characteristics changes

step Output response of microphone

Examples Create an omnidirectional microphone. Find the microphone response
at 200, 300, and 400 Hz for the incident angle [0;0]. Plot the azimuth
response of the microphone.

h = phased.OmnidirectionalMicrophoneElement(...

1-719

phased.OmnidirectionalMicrophoneElement

'FrequencyRange',[20 2e3]);
fc = [200 300 400];
ang = [0;0];
resp = step(h,fc,ang);
plotResponse(h,200,'RespCut','Az','Format','Polar');

See Also phased.CustomMicrophoneElement | phased.ULA | phased.URA |
phased.ConformalArray

1-720

phased.OmnidirectionalMicrophoneElement.clone

Purpose Create omnidirectional microphone object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-721

phased.OmnidirectionalMicrophoneElement.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-722

phased.OmnidirectionalMicrophoneElement.getNumOutpu

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-723

phased.OmnidirectionalMicrophoneElement.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
OmnidirectionalMicrophoneElement System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-724

phased.OmnidirectionalMicrophoneElement.isPolarization

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the phased.OmnidirectionalMicrophoneElement
supports polarization. An element supports polarization if it can
create or respond to polarized fields. This microphone element, as all
microphone elements, does not support polarization.

Input
Arguments

h - Omni-directional microphone element

Omni-directional microphone element specified as a
phased.OmnidirectionalMicrophoneElement System object

Output
Arguments

flag - Polarization-capability flag

Polarization-capability returned as a Boolean value true if the
microphone element supports polarization or false if it does not.
Because the phased.OmnidirectionalMicrophoneElement object
does not support polarization, flag is always returned as false.

Examples Omnidirectional Microphone Element does not Support
Polarization

Determine whether a phased.OmnidirectionalMicrophoneElement
microphone element supports polarization.

h = phased.OmnidirectionalMicrophoneElement;
isPolarizationCapable(h)

ans =

0

The returned value false (0) shows that the omnidirectional
microphone element does not support polarization.

1-725

phased.OmnidirectionalMicrophoneElement.plotResponse

Purpose Plot response pattern of microphone

Syntax plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ) plots the element response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency
is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K
row vector. FREQ must lie within the range specified by the
FrequencyVector property of H. If you set the 'RespCut' property
of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same
axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

1-726

phased.OmnidirectionalMicrophoneElement.plotResponse

Cut angle specified as a scalar. This argument is applicable only
when RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle
must be between –90 and 90. If RespCut is 'El', CutAngle must
be between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

’Polarization’

1-727

phased.OmnidirectionalMicrophoneElement.plotResponse

Specify the polarization options for plotting the antenna response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

1-728

phased.OmnidirectionalMicrophoneElement.plotResponse

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’AzimuthAngles’

Azimuth angles for plotting element response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting element response, specified as a row
vector. The ElevationAngles parameter sets the display range
and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When you set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

1-729

phased.OmnidirectionalMicrophoneElement.plotResponse

Default: [-90:90]

’UGrid’

U coordinate values for plotting element response, specified as
a row vector. The UGrid parameter sets the display range and
resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting element response, specified
as a row vector. The VGrid parameter sets the display range
and resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set the VGrid
and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples Plot Response and Directivity of Omnidirectional Microphone

This example shows how to construct an omnidirectional microphone
and how to plot its response and directivity. The microphone operating
frequency spans the range 20 to 20000 Hz.

Construct the omnidirectional microphone.

sOmni = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 20e3]);

1-730

phased.OmnidirectionalMicrophoneElement.plotResponse

Plot the microphone response at 200 Hz.

fc = 200;
plotResponse(sOmni,fc,'Unit','mag');

Plot the microphone directivity.

plotResponse(sOmni,fc,'Unit','dbi');

1-731

phased.OmnidirectionalMicrophoneElement.plotResponse

Plot 3-D Response of Omnidirectional Microphone

This example shows how to construct an omnidirection microphone with
response in the frequency range 20 - 20000 Hz and how to plot its 3-D
response over a range of angles.

Construct the microphone element.

sOmin = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 20e3]);

1-732

phased.OmnidirectionalMicrophoneElement.plotResponse

Plot the 3-D response at 500 Hz. Show the response between -30 to 30
degrees in both azimuth and elevation in 0.1 degree increments.

plotResponse(sOmin,500,'Format','Polar',...
'RespCut','3D','Unit','mag',...
'AzimuthAngles',[-30:0.1:30],...
'ElevationAngles',[-30:0.1:30]);

1-733

phased.OmnidirectionalMicrophoneElement.plotResponse

See Also uv2azel | azel2uv

1-734

phased.OmnidirectionalMicrophoneElement.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-735

phased.OmnidirectionalMicrophoneElement.step

Purpose Output response of microphone

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the microphone’s magnitude
response, RESP, at frequencies specified in FREQ and directions specified
in ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Microphone object.

FREQ

Frequencies in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

1-736

phased.OmnidirectionalMicrophoneElement.step

Output
Arguments

RESP

Response of microphone. RESP is an M-by-L matrix that contains
the responses of the microphone element at the M angles specified
in ANG and the L frequencies specified in FREQ.

Examples Create an omnidirectional microphone. Find the microphone response
at 200, 300, and 400 Hz for the incident angle [0;0]. Plot the azimuth
response of the microphone.

h = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 2e3]);

fc = [200 300 400];
ang = [0;0];
resp = step(h,fc,ang);
plotResponse(h,200,'RespCut','Az','Format','Polar');

1-737

phased.OmnidirectionalMicrophoneElement.step

See Also uv2azel | phitheta2azel

1-738

phased.PartitionedArray

Purpose Phased array partitioned into subarrays

Description The PartitionedArray object represents a phased array that is
partitioned into one or more subarrays.

To obtain the response of the subarrays in a partitioned array:

1 Define and set up your partitioned array. See “Construction” on
page 1-739.

2 Call step to compute the response of the subarrays according to the
properties of phased.PartitionedArray. The behavior of step is
specific to each object in the toolbox.

You can also specify a PartitionedArray object as the value of the
SensorArray or Sensor property of objects that perform beamforming,
steering, and other operations.

Construction H = phased.PartitionedArray creates a partitioned array System
object, H. This object represents an array that is partitioned into
subarrays.

H = phased.PartitionedArray(Name,Value) creates a partitioned
array object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN).

Properties Array

Array aperture

Specify a phased array as a phased.ULA, phased.URA, or
phased.ConformalArray object.

Default: phased.ULA('NumElements',4)

SubarraySelection

Subarray definition matrix

1-739

phased.PartitionedArray

Specify the subarray selection as an M-by-N matrix. M is the
number of subarrays and N is the total number of elements in the
array. Each row of the matrix indicates which elements belong to
the corresponding subarray. Each entry in the matrix is 1 or 0,
where 1 indicates that the element appears in the subarray and 0
indicates the opposite. Each row must contain at least one 1.

The phase center of each subarray is at its geometric center.
The SubarraySelection and Array properties determine the
geometric center.

Default: [1 1 0 0; 0 0 1 1]

SubarraySteering

Subarray steering method

Specify the method of steering the subarray as one of 'None' |
'Phase' | 'Time'.

Default: 'None'

PhaseShifterFrequency

Subarray phase shifter frequency

Specify the operating frequency of phase shifters that perform
subarray steering. The property value is a positive scalar in
hertz. This property applies when you set the SubarraySteering
property to 'Phase'.

Default: 3e8

Methods clone Create partitioned array with
same property values

collectPlaneWave Simulate received plane waves

getElementPosition Positions of array elements

1-740

phased.PartitionedArray

getNumElements Number of elements in array

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

getNumSubarrays Number of subarrays in array

getSubarrayPosition Positions of subarrays in array

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotResponse Plot response pattern of array

release Allow property value and input
characteristics changes

step Output responses of subarrays

viewArray View array geometry

Examples Azimuth Response of Partitioned ULA

Plot the azimuth response of a 4-element ULA partitioned into two
2-element ULA’s. The element spacing is one-half wavelength.

Create the ULA, and partition it into 2-element ULA’s.

h = phased.ULA('NumElements',4,'ElementSpacing',0.5);
ha = phased.PartitionedArray('Array',h,...

'SubarraySelection',[1 1 0 0;0 0 1 1]);

Plot the azimuth response of the array. Assume the operating frequency
is 1 GHz and the propagation speed is 3e8 m/s.

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar');

1-741

phased.PartitionedArray

Response of Subarrays in Partitioned ULA

Calculate the response at the boresight of a 4-element ULA partitioned
into two 2-element ULAs.

Create a 4-element ULA, and partition it into 2-element ULAs.

h = phased.ULA('NumElements',4,'ElementSpacing',0.5);
ha = phased.PartitionedArray('Array',h,...

'SubarraySelection',[1 1 0 0;0 0 1 1]);

1-742

phased.PartitionedArray

Calculate the response of the subarrays at boresight. Assume the
operating frequency is 1 GHz and the propagation speed is 3e8 m/s.

RESP = step(ha,1e9,[0;0],3e8);

References
[1] Van Trees, H.L. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ULA | phased.URA | phased.ConformalArray |
phased.ReplicatedSubarray

Related
Examples

• Subarrays in Phased Array Antennas
• Phased Array Gallery

Concepts • “Subarrays Within Arrays”

1-743

../examples/subarrays-in-phased-array-antennas.html
../examples/phased-array-gallery.html

phased.PartitionedArray.clone

Purpose Create partitioned array with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-744

phased.PartitionedArray.collectPlaneWave

Purpose Simulate received plane waves

Syntax Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description Y = collectPlaneWave(H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave(H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

Input
Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

1-745

phased.PartitionedArray.collectPlaneWave

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output
Arguments

Y

Received signals. Y is an N-column matrix, where N is the number
of subarrays in the array H. Each column of Y is the received
signal at the corresponding subarray, with all incoming signals
combined.

Examples Plane Waves Received at Array Containing Subarrays

Simulate the received signal at a 16-element ULA partitioned into four
4-element ULAs.

Create a 16-element ULA, and partition it into 4-element ULAs.

ha = phased.ULA('NumElements',16);
hpa = phased.PartitionedArray('Array',ha,...

'SubarraySelection',....
[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]);

Simulate receiving signals from 10 degrees and 30 degrees azimuth.
Both signals have an elevation angle of 0 degrees. Assume the
propagation speed is the speed of light and the carrier frequency of the
signal is 100 MHz.

Y = collectPlaneWave(hpa,randn(4,2),[10 30],...
1e8,physconst('LightSpeed'));

1-746

phased.PartitionedArray.collectPlaneWave

Algorithms collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. This
method does not account for the response of individual elements in the
array and only models the array factor among subarrays. Therefore, the
result does not depend on whether the subarray is steered.

See Also uv2azel | phitheta2azel

1-747

phased.PartitionedArray.getElementPosition

Purpose Positions of array elements

Syntax POS = getElementPosition(H)

Description POS = getElementPosition(H) returns the element positions in the
array H.

Input
Arguments

H

Partitioned array object.

Output
Arguments

POS

Element positions in array. POS is a 3-by-N matrix, where N is
the number of elements in H. Each column of POS defines the
position of an element in the local coordinate system, in meters,
using the form [x; y; z].

Examples Positions of Elements in Partitioned Array

Obtain the positions of the six elements in a partitioned array.

H = phased.PartitionedArray('Array',phased.URA('Size',[2 3]),...

'SubarraySelection',[1 0 1 0 1 0; 0 1 0 1 0 1]);

POS = getElementPosition(H);

See Also getSubarrayPosition

1-748

phased.PartitionedArray.getNumElements

Purpose Number of elements in array

Syntax N = getNumElements(H)

Description N = getNumElements(H) returns the number of elements in the array
object H.

Input
Arguments

H

Partitioned array object.

Examples Number of Elements in Partitioned Array

Obtain the number of elements in an array that is partitioned into
subarrays.

H = phased.PartitionedArray('Array',phased.URA('Size',[2 3]),...

'SubarraySelection',[1 0 1 0 1 0; 0 1 0 1 0 1]);

N = getNumElements(H);

See Also getNumSubarrays

1-749

phased.PartitionedArray.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-750

phased.PartitionedArray.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-751

phased.PartitionedArray.getNumSubarrays

Purpose Number of subarrays in array

Syntax N = getNumSubarrays(H)

Description N = getNumSubarrays(H) returns the number of subarrays in the
array object H. This number matches the number of rows in the
SubarraySelection property of H.

Input
Arguments

H

Partitioned array object.

Examples Number of Subarrays in Partitioned Array

Obtain the number of subarrays in a partitioned array.

H = phased.PartitionedArray('Array',...

phased.ULA('NumElements',5),...

'SubarraySelection',[1 1 1 0 0; 0 0 1 1 1]);

N = getNumSubarrays(H);

See Also getNumElements

1-752

phased.PartitionedArray.getSubarrayPosition

Purpose Positions of subarrays in array

Syntax POS = getSubarrayPosition(H)

Description POS = getSubarrayPosition(H) returns the subarray positions in
the array H.

Input
Arguments

H

Partitioned array object.

Output
Arguments

POS

Subarrays positions in array. POS is a 3-by-N matrix, where N is
the number of subarrays in H. Each column of POS defines the
position of a subarray in the local coordinate system, in meters,
using the form [x; y; z].

Examples Positions of Subarrays in Partitioned Array

Obtain the positions of the two subarrays in a partitioned array.

H = phased.PartitionedArray('Array',phased.URA('Size',[2 3]),...

'SubarraySelection',[1 0 1 0 1 0; 0 1 0 1 0 1]);

POS = getSubarrayPosition(H);

See Also getElementPosition

1-753

phased.PartitionedArray.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
PartitionedArray System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-754

phased.PartitionedArray.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the array supports polarization. An array supports
polarization if all its constituent sensor elements support polarization.

Input
Arguments

h - Partitioned array

Partitioned array specified as a phased.PartitionedArray
System object.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability flag returned as a Boolean value. This
value is true, if the array supports polarization or false, if it
does not.

Examples Partitioned Array of Short-Dipole Antenna Elements
Supports Polarization

Determine whether a partitioned array of
phased.ShortDipoleAntennaElement short-dipole antenna elements
supports polarization.

hsd = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[1e9 10e9]);

ha = phased.ULA(4,'Element',hsd);
hp = phased.PartitionedArray('Array',ha,...

'SubarraySelection',[1 1 0 0; 0 0 1 1]);
isPolarizationCapable(hp)

ans =

1

1-755

phased.PartitionedArray.isPolarizationCapable

The returned value true (1) shows that this array supports
polarization.

1-756

phased.PartitionedArray.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Array object.

FREQ

Operating frequency in hertz. Typical values are within the range
specified by a property of H.Array.Element. That property is
named FrequencyRange or FrequencyVector, depending on the
type of element in the array. The element has zero response at
frequencies outside that range. If FREQ is a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

1-757

phased.PartitionedArray.plotResponse

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

Cut angle specified as a scalar. This argument is applicable only
when RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle
must be between –90 and 90. If RespCut is 'El', CutAngle must
be between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in
a 3-D waterfall plot. If this value is false, then FREQ must be a
vector with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

1-758

phased.PartitionedArray.plotResponse

’Polarization’

Specify the polarization options for plotting the array response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where:

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’SteerAng’

Subarray steering angle. SteerAng can be either a 2-element
column vector or a scalar.

If SteerAng is a 2-element column vector, it has the form
[azimuth; elevation]. The azimuth angle must be between –180

1-759

phased.PartitionedArray.plotResponse

and 180 degrees, inclusive. The elevation angle must be between
–90 and 90 degrees, inclusive.

If SteerAng is a scalar, it specifies the azimuth angle. In this
case, the elevation angle is assumed to be 0.

This option is applicable only if the SubarraySteering property
of H is 'Phase' or 'Time'.

Default: [0;0]

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’Weights’

Weight values applied to the array, specified as a length-N
column vector or N-by-M matrix. The dimension N is the number
of subarrays in the array. The interpretation of M depends upon
whether the input argument FREQ is a scalar or row vector.

1-760

phased.PartitionedArray.plotResponse

Weights
Dimension

FREQ Dimension Purpose

N-by-1 column
vector

Scalar or 1-by-M
row vector

Apply one set
of weights for
the same single
frequency or all M
frequencies.

Scalar Apply all of the M
different columns
in Weights for
the same single
frequency.

N-by-M matrix
1-by-M row vector Apply each of theM

different columns
in Weights for
the corresponding
frequency in FREQ.

’AzimuthAngles’

Azimuth angles for plotting subarray response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting subarray response, specified as a row
vector. The ElevationAngles parameter sets the display range

1-761

phased.PartitionedArray.plotResponse

and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When you set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

Default: [-90:90]

’UGrid’

U coordinate values for plotting subarray response, specified
as a row vector. The UGrid parameter sets the display range
and resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting subarray response, specified
as a row vector. The VGrid parameter sets the display range
and resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set the VGrid
and UGrid parameters simultaneously.

Default: [-1:0.01:1]

1-762

phased.PartitionedArray.plotResponse

Examples Azimuth Response of Partitioned ULA

Plot the azimuth response of a 4-element ULA partitioned into two
2-element ULA’s. The element spacing is one-half wavelength.

Create the ULA, and partition it into 2-element ULA’s.

h = phased.ULA('NumElements',4,'ElementSpacing',0.5);
ha = phased.PartitionedArray('Array',h,...

'SubarraySelection',[1 1 0 0;0 0 1 1]);

Plot the azimuth response of the array. Assume the operating frequency
is 1 GHz and the propagation speed is 3e8 m/s.

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar');

1-763

phased.PartitionedArray.plotResponse

Plot Response and Directivity of Partitioned URA Over
Restricted Range of Angles

Convert a 2-by-6 URA of isotropic antenna elements into a 1-by-3
partitioned array so that each subarray of the partitioned array is a
2-by-2 URA. Assume that the frequency response of the elements lies
between 1 and 6 GHz. The elements are spaced one-half wavelength
apart corresponding to the highest frequency of the element response.
Plot an azimuth cut from -50 to 50 degrees for different two sets of

1-764

phased.PartitionedArray.plotResponse

weights. For partitioned arrays, weights are applied to the subarrays
instead of the elements.

Set up the partitioned array.

fmin = 1e9;
fmax = 6e9;
c = physconst('LightSpeed');
lam = c/fmax;
s_iso = phased.IsotropicAntennaElement(...

'FrequencyRange',[fmin,fmax],...
'BackBaffled',false);

s_ura = phased.URA('Element',s_iso,'Size',[2,6],...
'ElementSpacing',[lam/2,lam/2]);

subarraymap = [[1,1,1,1,0,0,0,0,0,0,0,0];...
[0,0,0,0,1,1,1,1,0,0,0,0];...
[0,0,0,0,0,0,0,0,1,1,1,1]];

s_pa = phased.PartitionedArray('Array',s_ura,...
'SubarraySelection',subarraymap);

Plot the response of the array at 5 GHz over the restricted range of
azimuth angles.

fc = 5e9;
wts = [[1,1,1]',[.862,1.23,.862]'];
plotResponse(s_pa,fc,c,'RespCut','Az',...

'AzimuthAngles',[-50:0.1:50],...
'Unit','db','Format','Polar',...
'Weights',wts);

1-765

phased.PartitionedArray.plotResponse

The plot of the response shows the broadening of the main lobe and the
reduction of the strength of the sidelobes caused by the weight tapering.

Next, plot an azimuth cut of the directivity of the array at 5 GHz
over the restricted range of azimuth angles for the two different sets
of weights.

fc = 5e9;
wts = [[1,1,1]',[.862,1.23,.862]'];
plotResponse(s_pa,fc,c,'RespCut','Az',...

1-766

phased.PartitionedArray.plotResponse

'AzimuthAngles',[-50:0.1:50],...
'Unit','dbi',...
'Weights',wts);

See Also uv2azel | azel2uv

1-767

phased.PartitionedArray.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-768

phased.PartitionedArray.step

Purpose Output responses of subarrays

Syntax RESP = step(H,FREQ,ANG,V)
RESP = step(H,FREQ,ANG,V,STEERANGLE)

Description RESP = step(H,FREQ,ANG,V) returns the responses RESP of the
subarrays in the array, at operating frequencies specified in FREQ and
directions specified in ANG. The phase center of each subarray is at
its geometric center. V is the propagation speed. The elements within
each subarray are connected to the subarray phase center using an
equal-path feed.

RESP = step(H,FREQ,ANG,V,STEERANGLE) uses STEERANGLE as the
subarray’s steering direction. This syntax is available when you set the
SubarraySteering property to either 'Phase' or 'Time'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Partitioned array object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector
of length L. Typical values are within the range specified
by a property of H.Array.Element. That property is named
FrequencyRange or FrequencyVector, depending on the type
of element in the array. The element has zero response at
frequencies outside that range.

1-769

phased.PartitionedArray.step

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

V

Propagation speed in meters per second. This value must be a
scalar.

STEERANGLE

Subarray steering direction. STEERANGLE can be either a
2-element column vector or a scalar.

If STEERANGLE is a 2-element column vector, it has the form
[azimuth; elevation]. The azimuth angle must be between
–180 and 180 degrees, inclusive. The elevation angle must be
between –90 and 90 degrees, inclusive.

If STEERANGLE is a scalar, it specifies the direction’s azimuth
angle. In this case, the elevation angle is assumed to be 0.

Output
Arguments

RESP

Voltage responses of the subarrays of a phased array. The output
depends on whether the array supports polarization or not.

• If the array is not capable of supporting polarization, the
voltage response, RESP, has the dimensions N-by-M-by-L.
The size N represents the number of subarrays in the phased
array, M represents the number of angles specified in ANG,
and L represents the number of frequencies specified in FREQ.

1-770

phased.PartitionedArray.step

For a particular subarray, each column of RESP contains the
responses of the subarray for the corresponding direction
specified in ANG. Each of the L pages of RESP contains the
responses of the subarrays for the corresponding frequency
specified in FREQ.

• If the array is capable of supporting polarization, the voltage
response, RESP, is a MATLAB struct containing two fields,
RESP.H and RESP.V. The field RESP.H represents the array’s
horizontal polarization response while RESP.V represents
the array’s vertical polarization response. Each field has the
dimensions N-by-M-by-L. The size N represents the number
of subarrays in the phased array, M represents the number
of angles specified in ANG, and L represents the number of
frequencies specified in FREQ. For a particular subarray, each
column of RESP contains the responses of the subarray for
the corresponding direction specified in ANG. Each of the L
pages of RESP contains the responses of the subarrays for the
corresponding frequency specified in FREQ.

Examples Response of Subarrays in Partitioned ULA

Calculate the response at the boresight of a 4-element ULA partitioned
into two 2-element ULAs.

Create a 4-element ULA, and partition it into 2-element ULAs.

h = phased.ULA('NumElements',4,'ElementSpacing',0.5);
ha = phased.PartitionedArray('Array',h,...

'SubarraySelection',[1 1 0 0;0 0 1 1]);

Calculate the response of the subarrays at boresight. Assume the
operating frequency is 1 GHz and the propagation speed is 3e8 m/s.

RESP = step(ha,1e9,[0;0],3e8);

See Also uv2azel | phitheta2azel

1-771

phased.PartitionedArray.viewArray

Purpose View array geometry

Syntax viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray(___)

Description viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(___) returns the handles of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

Input
Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’ShowIndex’

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

’ShowNormals’

1-772

phased.PartitionedArray.viewArray

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

’ShowTaper’

Set this value to true to specify whether to change the element
color brightness in proportion to the element taper magnitude.
When this value is set to false, all elements are drawn with the
same color. The default value is false.

Default: false

’ShowSubarray’

Vector specifying the indices of subarrays to highlight in the
figure. Each number in the vector must be an integer between
1 and the number of subarrays. You can also specify the string
'All' to highlight all subarrays of the array or 'None' to suppress
the subarray highlighting. The highlighting uses different colors
for different subarrays, and white for elements that occur in
multiple subarrays.

Default: 'All'

’Title’

String specifying the title of the plot.

Default: 'Array Geometry'

Output
Arguments

hPlot

Handles of array elements in figure window.

1-773

phased.PartitionedArray.viewArray

Examples Highlight Overlapped Subarrays

Display the geometry of a uniform linear array having overlapped
subarrays.

Create a 16-element ULA that has five 4-element subarrays. Some
elements occur in more than one subarray.

h = phased.ULA(16);
ha = phased.PartitionedArray('Array',h,...

'SubarraySelection',...
[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]);

Display the geometry of the array, highlighting all subarrays.

viewArray(ha);

1-774

phased.PartitionedArray.viewArray

Each color other than white represents a different subarray. White
represents elements that occur in multiple subarrays.

Examine the overlapped subarrays by creating separate figures that
highlight the first, second, and third subarrays. In each figure, dark
blue represents the highlighted elements.

for idx = 1:3
figure;
viewArray(ha,'ShowSubarray',idx,...

1-775

phased.PartitionedArray.viewArray

'Title',['Subarray #' num2str(idx)]);
end

1-776

phased.PartitionedArray.viewArray

1-777

phased.PartitionedArray.viewArray

See Also phased.ArrayResponse

Related
Examples

• Phased Array Gallery

1-778

../examples/phased-array-gallery.html

phased.PhaseCodedWaveform

Purpose Phase-coded pulse waveform

Description The PhaseCodedWaveform object creates a phase-coded pulse waveform.

To obtain waveform samples:

1 Define and set up your phase-coded pulse waveform. See
“Construction” on page 1-779.

2 Call step to generate the phase-coded pulse waveform samples
according to the properties of phased.PhaseCodedWaveform. The
behavior of step is specific to each object in the toolbox.

Construction H = phased.PhaseCodedWaveform creates a phase-coded pulse
waveform System object, H. The object generates samples of a
phase-coded pulse.

H = phased.PhaseCodedWaveform(Name,Value) creates a phase-coded
pulse waveform object, H, with additional options specified by one or
more Name,Value pair arguments. Name is a property name, and Value
is the corresponding value. Name must appear inside single quotes ('').
You can specify several name-value pair arguments in any order as
Name1,Value1, ,NameN,ValueN.

Properties SampleRate

Sample rate

Specify the sample rate in hertz as a positive scalar. The default
value of this property corresponds to 1 MHz. The value of this
property must satisfy these constraints:

• (SampleRate ./ PRF) is a scalar or vector that contains only
integers.

• (SampleRate * ChipWidth) is an integer value.

Default: 1e6

1-779

phased.PhaseCodedWaveform

Code

Phase code type

Specify the phase code type used in phase modulation. Valid
values are:

• 'Barker'

• 'Frank'

• 'P1'

• 'P2'

• 'P3'

• 'P4'

• 'Px'

• 'Zadoff-Chu'

Default: 'Frank'

ChipWidth

Duration of each chip

Specify the duration of each chip in a phase-coded waveform in
seconds as a positive scalar.

The value of this property must satisfy these constraints:

• ChipWidth is less than or equal to (1./(NumChips * PRF)).

• (SampleRate * ChipWidth) is an integer value.

Default: 1e-5

NumChips

Number of chips

1-780

phased.PhaseCodedWaveform

Specify the number of chips in a phase-coded waveform as a
positive integer. The value of this property must be less than or
equal to (1./(ChipWidth * PRF)).

The table shows additional constraints on the number of chips
for different code types.

If the Code property is ... Then the NumChips property
must be...

'Frank', 'P1', or 'Px' A perfect square

'P2' An even number that is a
perfect square

'Barker' 2, 3, 4, 5, 7, 11, or 13

Default: 4

SequenceIndex

Zadoff-Chu sequence index

Specify the sequence index used in Zadoff-Chu code as a positive
integer. This property applies only when you set the Code
property to 'Zadoff-Chu'. The value of SequenceIndex must be
relatively prime to the value of the NumChips property.

Default: 1

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (in hertz) as a scalar or a
row vector. The default value of this property corresponds to 10
kHz.

To implement a constant PRF, specify PRF as a positive scalar.
To implement a staggered PRF, specify PRF as a row vector with
positive elements. When PRF is a vector, the output pulses use

1-781

phased.PhaseCodedWaveform

successive elements of the vector as the PRF. If the last element
of the vector is reached, the process continues cyclically with the
first element of the vector.

The value of this property must satisfy these constraints:

• PRF is less than or equal to (1/PulseWidth).

• (SampleRate ./ PRF) is a scalar or vector that contains only
integers.

Default: 1e4

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Pulses'
or 'Samples'. When you set the OutputFormat property to
'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the
NumPulses property.

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property.

Default: 'Pulses'

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method
as a positive integer. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

1-782

phased.PhaseCodedWaveform

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as
a positive integer. This property applies only when you set the
OutputFormat property to 'Pulses'.

Default: 1

Methods bandwidth Bandwidth of phase-coded
waveform

clone Create phase-coded waveform
object with same property values

getMatchedFilter Matched filter coefficients for
waveform

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plot Plot phase-coded pulse waveform

release Allow property value and input
characteristics changes

reset Reset states of phase-coded
waveform object

step Samples of phase-coded waveform

Examples Create and plot a phase-coded pulse waveform that uses the Zadoff-Chu
code.

1-783

phased.PhaseCodedWaveform

hw = phased.PhaseCodedWaveform('Code','Zadoff-Chu',...
'ChipWidth',1e-6,'NumChips',16,...
'OutputFormat','Pulses','NumPulses',2);

plot(hw);

Generate samples of a phase-coded pulse waveform that uses the
Zadoff-Chu code, and plot the samples.

hw = phased.PhaseCodedWaveform('Code','Zadoff-Chu',...

1-784

phased.PhaseCodedWaveform

'ChipWidth',1e-6,'NumChips',16,...
'OutputFormat','Pulses','NumPulses',2);

x = step(hw);
figure;
plot(real(x)); title('Waveform Output, Real Part');
xlabel('Samples'); ylabel('Amplitude (V)');

Algorithms A 2-chip Barker code can use [1 –1] or [1 1] as the sequence of
amplitudes. This software implements [1 –1].

1-785

phased.PhaseCodedWaveform

A 4-chip Barker code can use [1 1 –1 1] or [1 1 1 –1] as the sequence of
amplitudes. This software implements [1 1 –1 1].

A Zadoff-Chu code can use a clockwise or counterclockwise
sequence of phases. This software implements the latter,

such as   f k() SequenceIndex NumChips instead of

   f k() SequenceIndex NumChips . In these expressions, k is the
index of the chip and f(k) is a function of k.

For further details, see [1].

References [1] Levanon, N. and E. Mozeson. Radar Signals. Hoboken, NJ: John
Wiley & Sons, 2004.

See Also phased.LinearFMWaveform | phased.SteppedFMWaveform |
phased.RectangularWaveform

Related
Examples

• Waveform Analysis Using the Ambiguity Function

Concepts • “Phase-Coded Waveforms”

1-786

../examples/waveform-analysis-using-the-ambiguity-function.html

phased.PhaseCodedWaveform.bandwidth

Purpose Bandwidth of phase-coded waveform

Syntax BW = bandwidth(H)

Description BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses
for the phase-coded pulse waveform, H. The bandwidth value is the
reciprocal of the chip width.

Input
Arguments

H

Phase-coded waveform object.

Output
Arguments

BW

Bandwidth of the pulses, in hertz.

Examples Determine the bandwidth of a Frank code waveform.

H = phased.PhaseCodedWaveform;
bw = bandwidth(H);

1-787

phased.PhaseCodedWaveform.clone

Purpose Create phase-coded waveform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-788

phased.PhaseCodedWaveform.getMatchedFilter

Purpose Matched filter coefficients for waveform

Syntax Coeff = getMatchedFilter(H)

Description Coeff = getMatchedFilter(H) returns the matched filter coefficients
for the phase-coded waveform object, H. Coeff is a column vector.

Input
Arguments

H

Phase-coded waveform object.

Output
Arguments

Coeff

Column vector containing coefficients of the matched filter for H.

Examples Get the matched filter coefficients for a phase-coded pulse waveform
that uses the Zadoff-Chu code.

hwav = phased.PhaseCodedWaveform('Code','Zadoff-Chu',...
'ChipWidth',1e-6,'NumChips',16,...
'OutputFormat','Pulses','NumPulses',2);

coeff = getMatchedFilter(hwav);
stem(real(coeff));
title('Matched Filter Coefficients, Real Part');
axis([0 17 -1.1 1.1])

1-789

phased.PhaseCodedWaveform.getMatchedFilter

1-790

phased.PhaseCodedWaveform.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-791

phased.PhaseCodedWaveform.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-792

phased.PhaseCodedWaveform.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
PhaseCodedWaveform System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-793

phased.PhaseCodedWaveform.plot

Purpose Plot phase-coded pulse waveform

Syntax plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot(___)

Description plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options
specified by one or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line
style, or marker options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input
Arguments

Hwav

Waveform object. This variable must be a scalar that represents a
single waveform object.

LineSpec

String that specifies the same line color, style, or marker options
as are available in the MATLAB plot function. If you specify a
PlotType value of 'complex', then LineSpec applies to both the
real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’PlotType’

1-794

phased.PhaseCodedWaveform.plot

Specifies whether the function plots the real part, imaginary part,
or both parts of the waveform. Valid values are 'real', 'imag',
and 'complex'.

Default: 'real'

’PulseIdx’

Index of the pulse to plot. This value must be a scalar.

Default: 1

Output
Arguments

h

Handle to the line or lines in the figure. For a PlotType value of
'complex', h is a column vector. The first and second elements of
this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples Create and plot a phase-coded pulse waveform that uses the Zadoff-Chu
code.

hw = phased.PhaseCodedWaveform('Code','Zadoff-Chu',...
'ChipWidth',1e-6,'NumChips',16,...
'OutputFormat','Pulses','NumPulses',2);

plot(hw);

1-795

phased.PhaseCodedWaveform.plot

1-796

phased.PhaseCodedWaveform.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-797

phased.PhaseCodedWaveform.reset

Purpose Reset states of phase-coded waveform object

Syntax reset(H)

Description reset(H) resets the states of the PhaseCodedWaveform object, H.
Afterward, the next call to step restarts the phase sequence from the
beginning. Also, if the PRF property is a vector, the next call to step
uses the first PRF value in the vector.

1-798

phased.PhaseCodedWaveform.step

Purpose Samples of phase-coded waveform

Syntax Y = step(H)

Description Y = step(H) returns samples of the phase-coded pulse in a column
vector, Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Phase-coded waveform object.

Output
Arguments

Y

Column vector containing the waveform samples.

Examples Generate samples of two pulses of a phase-coded pulse waveform that
uses the Zadoff-Chu code.

hw = phased.PhaseCodedWaveform('Code','Zadoff-Chu',...
'ChipWidth',1e-6,'NumChips',16,...
'OutputFormat','Pulses','NumPulses',2);

x = step(hw);
figure;
plot(real(x)); title('Waveform Output, Real Part');
xlabel('Samples'); ylabel('Amplitude (V)');

1-799

phased.PhaseCodedWaveform.step

1-800

phased.PhaseShiftBeamformer

Purpose Narrowband phase shift beamformer

Description The PhaseShiftBeamformer object implements a phase shift
beamformer.

To compute the beamformed signal:

1 Define and set up your phase shift beamformer. See “Construction”
on page 1-801.

2 Call step to perform the beamforming operation according to the
properties of phased.PhaseShiftBeamformer. The behavior of step
is specific to each object in the toolbox.

Construction H = phased.PhaseShiftBeamformer creates a conventional phase
shift beamformer System object, H. The object performs phase shift
beamforming on the received signal.

H = phased.PhaseShiftBeamformer(Name,Value) creates a phase
shift beamformer object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Sensor array

Sensor array specified as an array System object belonging to the
phased package. A sensor array can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

1-801

phased.PhaseShiftBeamformer

OperatingFrequency

System operating frequency

Specify the operating frequency of the beamformer in hertz as a
scalar. The default value of this property corresponds to 300 MHz.

Default: 3e8

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction for the beamformer
comes from the Direction property of this object or from an
input argument in step. Values of this property are:

'Property' The Direction property of this object
specifies the beamforming direction.

'Input port' An input argument in each invocation
of step specifies the beamforming
direction.

Default: 'Property'

Direction

Beamforming directions

Specify the beamforming directions of the beamformer as a
two-row matrix. Each column of the matrix has the form
[AzimuthAngle; ElevationAngle] (in degrees). Each azimuth angle
must be between –180 and 180 degrees, and each elevation angle
must be between –90 and 90 degrees. This property applies when
you set the DirectionSource property to 'Property'.

Default: [0; 0]

WeightsNormalization

1-802

phased.PhaseShiftBeamformer

Approach for normalizing beamformer weights

If you set this property value to 'Distortionless', the gain
toward the beamforming direction is 0 dB. If you set this property
value to 'Preserve power', the norm of the weights is 1.

Default: 'Distortionless'

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

Methods clone Create phase shift beamformer
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform phase shift beamforming

Examples Apply phase shift beamforming to the signal received by a 5-element
ULA. The beamforming direction is 45 degrees azimuth and 0 degrees
elevation.

1-803

phased.PhaseShiftBeamformer

% Simulate signal
t = (0:1000)';
x = sin(2*pi*0.01*t);
c = 3e8; Fc = 3e8;
incidentAngle = [45; 0];
ha = phased.ULA('NumElements',5);
x = collectPlaneWave(ha,x,incidentAngle,Fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

% Beamforming
hbf = phased.PhaseShiftBeamformer('SensorArray',ha,...

'OperatingFrequency',Fc,'PropagationSpeed',c,...
'Direction',incidentAngle,'WeightsOutputPort',true);

[y,w] = step(hbf,rx);

% Plot signals
plot(t,real(rx(:,3)),'r:',t,real(y));
xlabel('Time'); ylabel('Amplitude');
legend('Original','Beamformed');

% Plot response pattern
figure;
plotResponse(ha,Fc,c,'Weights',w);

1-804

phased.PhaseShiftBeamformer

1-805

phased.PhaseShiftBeamformer

Algorithms The phase shift beamformer uses the conventional delay-and-sum
beamforming algorithm. The beamformer assumes the signal is
narrowband, so a phase shift can approximate the required delay. The
beamformer preserves the incoming signal power.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

1-806

phased.PhaseShiftBeamformer

See Also phased.LCMVBeamformer | phased.MVDRBeamformer |
phased.SubbandPhaseShiftBeamformer | uv2azel | phitheta2azel

1-807

phased.PhaseShiftBeamformer.clone

Purpose Create phase shift beamformer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-808

phased.PhaseShiftBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-809

phased.PhaseShiftBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-810

phased.PhaseShiftBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
PhaseShiftBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-811

phased.PhaseShiftBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-812

phased.PhaseShiftBeamformer.step

Purpose Perform phase shift beamforming

Syntax Y = step(H,X)
Y = step(H,X,ANG)
[Y,W] = step(___)

Description Y = step(H,X) performs phase shift beamforming on the input, X, and
returns the beamformed output in Y.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This
syntax is available when you set the DirectionSource property to
'Input port'.

[Y,W] = step(___) returns the beamforming weights, W. This syntax
is available when you set the WeightsOutputPort property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Beamformer object.

X

Input signal, specified as an M-by-N matrix. If the sensor array
contains subarrays, N is the number of subarrays; otherwise, N is
the number of elements.

ANG

Beamforming directions, specified as a two-row matrix. Each
column has the form [AzimuthAngle; ElevationAngle], in degrees.

1-813

phased.PhaseShiftBeamformer.step

Each azimuth angle must be between –180 and 180 degrees, and
each elevation angle must be between –90 and 90 degrees.

Output
Arguments

Y

Beamformed output. Y is an M-by-L matrix, where M is the
number of rows of X and L is the number of beamforming
directions.

W

Beamforming weights. W is an N-by-L matrix, where L is the
number of beamforming directions. If the sensor array contains
subarrays, N is the number of subarrays; otherwise, N is the
number of elements.

Examples Apply phase shift beamforming to the signal received by a 5-element
ULA. The beamforming direction is 45 degrees azimuth and 0 degrees
elevation.

% Simulate signal
t = (0:1000)';
x = sin(2*pi*0.01*t);
c = 3e8; Fc = 3e8;
incidentAngle = [45; 0];
ha = phased.ULA('NumElements',5);
x = collectPlaneWave(ha,x,incidentAngle,Fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

% Beamforming
hbf = phased.PhaseShiftBeamformer('SensorArray',ha,...

'OperatingFrequency',Fc,'PropagationSpeed',c,...
'Direction',incidentAngle,'WeightsOutputPort',true);

[y,w] = step(hbf,rx);

Algorithms The phase shift beamformer uses the conventional delay-and-sum
beamforming algorithm. The beamformer assumes the signal is

1-814

phased.PhaseShiftBeamformer.step

narrowband, so a phase shift can approximate the required delay. The
beamformer preserves the incoming signal power.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | phitheta2azel

1-815

phased.Platform

Purpose Motion platform

Description The Platform object models the translational motion of a target or
array in space.

To model a moving platform:

1 Define and set up your platform. See “Construction” on page 1-816.

2 Call step to move the platform following a defined path according to
the properties of phased.Platform. The behavior of step is specific
to each object in the toolbox.

Construction H = phased.Platform creates a platform System object, H. The object
models translational motion in space.

H = phased.Platform(Name,Value) creates object, H, with each
specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.Platform(POS,V,Name,Value) creates a platform object,
H, with the InitialPosition property set to POS, the Velocity
property set to V, and other specified property Names set to the specified
Values. POS and V are value-only arguments. To specify a value-only
argument, you must also specify all preceding value-only arguments.
You can specify name-value pair arguments in any order.

Properties InitialPosition

Initial position of platform

Specify the initial position of the platform as a 3-by-1 column
vector in the form of [x; y; z] (in meters).

Default: [0; 0; 0]

Velocity

1-816

phased.Platform

Velocity of platform

Specify the current velocity of the platform as a 3-by-1 vector
in the form of [x; y; z] (in meters/second). This property is
tunable.

Default: [0; 0; 0]

OrientationAxes

Orientation axes of platform

Specify the three axes that define the local (x, y, z) coordinate
system at the platform as a 3-by-3 matrix (one axis in each
column). The three axes must be orthonormal.

Default: [1 0 0;0 1 0;0 0 1]

OrientationAxesOutputPort

Output orientation axes

To obtain the orientation axes of the platform, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the orientation axes of the
platform, set this property to false.

Default: false

Methods clone Create platform object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

1-817

phased.Platform

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

reset Reset platform to initial position

step Output current position, velocity,
and orientation axes of platform

Examples Define a platform at origin with a velocity of (100,100,0) in meters per
second. Simulate the motion of the platform for 2 steps, assuming the
time elapsed for each step is 1 second.

Hp = phased.Platform([0; 0; 0],[100; 100; 0]);
T = 1;
[pos,v] = step(Hp,T)
[pos,v] = step(Hp,T)

See Also global2localcoord | local2globalcoord | phased.Collector |
phased.Radiator | rangeangle

Related
Examples

• “Motion Modeling in Phased Array Systems”

1-818

phased.Platform.clone

Purpose Create platform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-819

phased.Platform.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-820

phased.Platform.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-821

phased.Platform.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the Platform
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-822

phased.Platform.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-823

phased.Platform.reset

Purpose Reset platform to initial position

Syntax reset(H)

Description reset(H) resets the initial position of the Platform object, H.

1-824

phased.Platform.step

Purpose Output current position, velocity, and orientation axes of platform

Syntax [P,V] = step(H,T)
[P,V,AX] = step(H,T)

Description [P,V] = step(H,T) returns the current position, P, and the current
velocity, V, of the platform. The method then updates the position and
velocity using the equation P = P+VT where T specifies the elapsed time
(in seconds) for the current step.

[P,V,AX] = step(H,T) returns the additional output
AX as the platform’s orientation axes when you set the
OrientationAxesOutputPort property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Define a platform at origin with a velocity of [100; 100; 0] in meters per
second. Simulate the motion of the platform for 2 steps, assuming the
time elapsed for each step is 1 second.

Hp = phased.Platform([0; 0; 0],[100; 100; 0]);
T = 1;
[pos,v] = step(Hp,T)
[pos,v] = step(Hp,T)

1-825

phased.RadarTarget

Purpose Radar target

Description The RadarTarget object models a radar target.

To compute the signal reflected from a radar target:

1 Define and set up your radar target. See “Construction” on page
1-826.

2 Call step to compute the reflected signal according to the properties
of phased.RadarTarget. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.RadarTarget creates a radar target System object, H, that
computes the reflected signal from a target.

H = phased.RadarTarget(Name,Value) creates a radar target
object, H, with each specified property set to the specified value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties EnablePolarization

Allow polarized signals

Set this property to true to allow the target to simulate the
reflection of polarized radiation. Set this property to false to
ignore polarization.

Default: false

Mode

Target scattering mode

Target scattering mode specified as one of 'Monostatic' or
'Bistatic'. If you set this property to 'Monostatic', the signal’s
reflection direction is the opposite to its incoming direction. If you
set this property to 'Bistatic', the signal’s reflection direction

1-826

phased.RadarTarget

differs from its incoming direction. This property applies when
you set the EnablePolarization property to true.

Default: 'Monostatic'

ScatteringMatrixSource

Source of target mean scattering matrix

Source of target mean scattering matrix specified as
one of 'Property' or 'Input port'. If you set the
ScatteringMatrixSource property to 'Property', the target’s
mean scattering matrix is determined by the value of the
ScatteringMatrix property. If you set this property to 'Input
port', the mean scattering matrix is determined by an input
argument of the step method. This property applies only when
you set the EnablePolarization property to true. When
the EnablePolarization property is set to false, use the
MeanRCSSource property instead, together with the MeanRCS
property, if needed.

Default: 'Property'

ScatteringMatrix

Mean radar scattering matrix

Mean radar scattering matrix specified as a 2-by-2 matrix.
This matrix represents the mean value of the target’s radar
cross-section (in square meters). The matrix has the form
[s_hh s_hv;s_vh s_vv]. In this matrix, the component s_hv
specifies the complex scattering response when the input signal
is vertically polarized and the reflected signal is horizontally
polarized. The other components are defined similarly. This
property applies when you set the ScatteringMatrixSource
property to 'Property' and the EnablePolarization property
to true. When the EnablePolarization property is set to
false, use the MeanRCS property instead, together with the
MeanRCSSource property. This property is tunable.

1-827

phased.RadarTarget

Default: [1 0;0 1]

MeanRCSSource

Source of mean radar cross section

Specify whether the target’s mean RCS value comes from the
MeanRCS property of this object or from an input argument in
step. Values of this property are:

'Property' The MeanRCS property of this object
specifies the mean RCS value.

'Input port' An input argument in each invocation
of step specifies the mean RCS value.

When EnablePolarization property is set to true, use
the ScatteringMatrixSource property together with the
ScatteringMatrix property if needed.

Default: 'Property'

MeanRCS

Mean radar cross section

Specify the mean value of the target’s radar cross section (in
square meters) as a nonnegative scalar. This property applies
when the MeanRCSSource property is 'Property'. This property
is tunable.

When EnablePolarization property is set to true,
use the ScatteringMatrix property together with the
ScatteringMatrixSource.

Default: 1

Model

Target statistical model

1-828

phased.RadarTarget

Specify the statistical model of the target as one of
'Nonfluctuating', 'Swerling1', 'Swerling2', 'Swerling3',
or 'Swerling4'. If you set this property to a value other than
'Nonfluctuating', you must use the UPDATERCS input argument
when invoking step.

Default: 'Nonfluctuating'

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

OperatingFrequency

Signal carrier frequency

Specify the carrier frequency of the signal you are reflecting from
the target, as a scalar in hertz. The default value of this property
corresponds to 300 MHz.

Default: 3e8

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this
property are:

1-829

phased.RadarTarget

'Auto' The default MATLAB random number
generator produces the random numbers.
Use 'Auto' if you are using this object
with Parallel Computing Toolbox software.

'Property' The object uses its own private random
number generator to produce random
numbers. The Seed property of this object
specifies the seed of the random number
generator. Use 'Property' if you want
repeatable results and are not using this
object with Parallel Computing Toolbox
software.

The random numbers are used to model random RCS values.
This property applies when the Model property is 'Swerling1',
'Swerling2','Swerling3', or 'Swerling4'.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232–1. This property applies when you set
the SeedSource property to 'Property'.

Default: 0

Methods clone Create radar target object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

1-830

phased.RadarTarget

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

reset Reset states of radar target object

step Reflect incoming signal

Examples Calculate the reflected signal from a nonfluctuating point target.

x = ones(10,1);
hr = phased.RadarTarget('Model','Nonfluctuating','MeanRCS',10);
y = step(hr,x);

Algorithms The reflected signal is given by:

Y G X 

where:

• X is the incoming signal

• G is the target gain factor, a dimensionless quantity given by

G 
4

2




• σ is the mean RCS of the target

• λ is the wavelength of the incoming signal

Each element of the signal incident on the target is scaled by the gain
factor.

For polarized waves, the scattering equation is more complicated. The
single scalar signal, X, is replaced by a vector signal, (EH, EV), with
horizontal and vertical components. A scattering matrix, S, replaces
the scalar cross-section, σ. Through the scattering matrix, the incident

1-831

phased.RadarTarget

horizontal and vertical polarized signals are converted into the reflected
horizontal and vertical polarized signals

E

E

S S

S S

E

E

H
scat

V
scat

HH VH

HV VV

H
inc

V
i

()

()

()

(
























4
2


 nnc

H
inc

V
inc

S
E

E)

()

()












  













4
2




For further details, see Mott, [1] or Richards, [2] .

References [1] Mott, H., Antennas for Radar and Communications, John Wiley &
Sons, 1992.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[3] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also phased.FreeSpace | phased.Platform

Concepts • “Radar Target”

1-832

phased.RadarTarget.clone

Purpose Create radar target object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-833

phased.RadarTarget.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-834

phased.RadarTarget.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-835

phased.RadarTarget.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the RadarTarget
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-836

phased.RadarTarget.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles,
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-837

phased.RadarTarget.reset

Purpose Reset states of radar target object

Syntax reset(H)

Description reset(H) resets the states of the RadarTarget object, H. This method
resets the random number generator state if the SeedSource property
is applicable and has the value 'Property'.

1-838

phased.RadarTarget.step

Purpose Reflect incoming signal

Syntax Y = step(H,X)
Y = step(H,X,MEANRCS)
Y = step(H,X,UPDATERCS)
Y = step(H,X,MEANRCS,UPDATERCS)

Y = step(H,X,ANGLE_IN,LAXES)
Y = step(H,X,ANGLE_IN,ANGLE_OUT,LAXES)
Y = step(H,X,ANGLE_IN,LAXES,SMAT)
Y = step(H,X,ANGLE_IN,LAXES,UPDATESMAT)
Y = step(H,X,ANGLE_IN,ANGLE_OUT,LAXES,SMAT,UPDATESMAT)

Description Y = step(H,X) returns the reflected signal Y due to the incident
signal X. Use this syntax when you set the Model property of H to
'Nonfluctuating'. In this case, the value of the MeanRCS property is
used as the Radar cross-section (RCS) value. This syntax applies only
when the EnablePolarization property is set to false.

Y = step(H,X,MEANRCS) uses MEANRCS as the mean RCS value. This
syntax is available when you set the MeanRCSSource property to 'Input
port'. MEANRCS must be a positive scalar. This syntax applies only
when the EnablePolarization property is set to false.

Y = step(H,X,UPDATERCS) uses UPDATERCS as the indicator of
whether to update the RCS value. This syntax is available when you
set the Model property to 'Swerling1', 'Swerling2', 'Swerling3', or
'Swerling4'. If UPDATERCS is true, a new RCS value is generated.
If UPDATERCS is false, the previous RCS value is used. This syntax
applies only when the EnablePolarization property is set to false.

Y = step(H,X,MEANRCS,UPDATERCS) lets you can combine optional
input arguments when their enabling properties are set. This syntax
applies only when the EnablePolarization property is set to false.

1-839

phased.RadarTarget.step

Y = step(H,X,ANGLE_IN,LAXES) returns the reflected signal Y
from an incident signal X. This syntax applies only when the
EnablePolarization property is set to true. The input argument,
ANGLE_IN, specifies the direction of the incident signal with respect
to the target’s local coordinate system. The input argument, LAXES,
specifies the direction of the local coordinate axes with respect to the
global coordinate system. This syntax requires that you set the Model
property to 'Nonfluctuating' and the Mode property to 'Monostatic'.
In this case, the value of the ScatteringMatrix property is used as
the scattering matrix value.

X is a row array of MATLAB struct type, each member of the array
representing a different signal. The struct contains three fields, X.X,
X.Y, and X.Z. Each field corresponds to the x, y, and z components of
the polarized input signal. Polarization components are measured with
respect to the global coordinate system. Each field is a column vector
representing a sequence of values for each incoming signal. The X.X,
X.Y, and Y.Z fields must all have the same dimension. The argument,
ANGLE_IN, is a 2-row matrix representing the signals’ incoming
directions with respect to the target’s local coordinate system. Each
column of ANGLE_IN specifies the incident direction of the corresponding
signal in the form [AzimuthAngle; ElevationAngle]. Angle units
are in degrees. The number of columns in ANGLE_IN must equal the
number of members in the X array. The argument, LAXES, is a 3-by-3
matrix. Each column is a unit vector specifying the local coordinate
system’s orthonormal x, y, and z axes, respectively, with respect to the
global coordinate system. Each columns is written in [x;y;z] form.

Y is a row array of struct type having the same size as X. Each struct
contains the three reflected polarized fields, Y.X, Y.Y, and Y.Z. Each
field corresponds to the x, y, and z component of the signal. Polarization
components are measured with respect to the global coordinate system.
Each field is a column vector representing one reflected signal.

Y = step(H,X,ANGLE_IN,ANGLE_OUT,LAXES), in addition, specifies
the reflection angle, ANGLE_OUT, of the reflected signal when you set
the Mode property to 'Bistatic'. This syntax applies only when the

1-840

phased.RadarTarget.step

EnablePolarization property is set to true. ANGLE_OUT is a 2-row
matrix representing the reflected direction of each signal. Each column
of ANGLE_OUT specifies the reflected direction of the signal in the form
[AzimuthAngle; ElevationAngle]. Angle units are in degrees. The
number of columns in ANGLE_OUT must equal the number of members
in the X array. The number of columns in ANGLE_OUT must equal the
number of elements in the X array.

Y = step(H,X,ANGLE_IN,LAXES,SMAT) specifies SMAT as the scattering
matrix. This syntax applies only when the EnablePolarization
property is set to true. The input argument SMAT is a 2-by-2 matrix.
You must set the ScatteringMatrixSource property 'Input port'
to use SMAT.

Y = step(H,X,ANGLE_IN,LAXES,UPDATESMAT) specifies UPDATESMAT
to indicate whether to update the scattering matrix when you set
the Model property to 'Swerling1', 'Swerling2'’, 'Swerling3', or
'Swerling4'. This syntax applies only when the EnablePolarization
property is set to true. If UPDATESMAT is set to true, a scattering
matrix value is generated. If UPDATESMAT is false, the previous
scattering matrix value is used.

You can combine optional input arguments when their enabling
properties are set. Optional inputs must be listed in the same
order as the order of their enabling properties. For example,Y =
step(H,X,ANGLE_IN,ANGLE_OUT,LAXES,SMAT,UPDATESMAT)

1-841

phased.RadarTarget.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Reflect a 250-Hz sine wave with unit amplitude off a target with a
nonfluctuating RCS of 2 m2. The carrier frequency of the sine wave is
1 GHz.

Reflection of Sine Wave

htarget = phased.RadarTarget('Model','nonfluctuating',...
'MeanRCS',2,'OperatingFrequency',1e9);

t = linspace(0,1,1000);
sig = cos(2*pi*250*t)';
reflectedsig = step(htarget,sig);

Algorithms The reflected signal is given by:

Y G X 

where:

• X is the incoming signal

• G is the target gain factor, a dimensionless quantity given by

G 
4

2




• σ is the mean RCS of the target

• λ is the wavelength of the incoming signal

1-842

phased.RadarTarget.step

Each element of the signal incident on the target is scaled by the gain
factor.

For polarized waves, the scattering equation is more complicated. The
single scalar signal, X, is replaced by a vector signal, (EH, EV), with
horizontal and vertical components. A scattering matrix, S, replaces
the scalar cross-section, σ. Through the scattering matrix, the incident
horizontal and vertical polarized signals are converted into the reflected
horizontal and vertical polarized signals

E

E

S S

S S

E

E

H
scat

V
scat

HH VH

HV VV

H
inc

V
i

()

()

()

(
























4
2


 nnc

H
inc

V
inc

S
E

E)

()

()












  













4
2




For further details, see Mott [1] or Richards[2].

References [1] Mott, H. Antennas for Radar and Communications.John Wiley &
Sons, 1992.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[3] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

1-843

phased.Radiator

Purpose Narrowband signal radiator

Description The phased.Radiator object implements a narrowband signal radiator.
For any antenna element, microphone element, or array, the radiator
creates the outgoing signal that is to be propagated to the far field
using the phased.FreeSpace object. You can think of the output
of phased.Radiator as the field at a reference distance from the
element or center of the array. The signal can represent a polarized
or nonpolarized field depending upon whether the element or array
supports polarization and the value of the EnablePolarization
property. For arrays, you can create a superposed field of all array
elements signals or a separate field for each element depending upon
the value of the CombineRadiatedSignals property.

To compute the radiated signal from the sensor(s):

1 Define and set up your radiator. See “Construction” on page 1-844.

2 Call step to compute the radiated signal according to the properties
of phased.Radiator. The behavior of step is specific to each object
in the toolbox.

Construction H = phased.Radiator creates a narrowband signal radiator System
object, H. The object returns radiated narrowband signals for given
directions using a sensor array or a single element.

H = phased.Radiator(Name,Value) creates a radiator object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties Sensor

Sensor element or sensor array

Sensor element or sensor array specified as a System object in
the Phased Array System Toolbox. A sensor array can contain
subarrays.

1-844

phased.Radiator

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

CombineRadiatedSignals

Combine radiated signals

Set this property to true to combine radiated signals from all
radiating elements. Set this property to false to obtain the
radiated signal for each radiating element. If the Sensor property
is an array that contains subarrays, the CombineRadiatedSignals
property must be true.

Default: true

EnablePolarization

Enable Polarization

Set this property to true to simulate the radiation of polarized
waves. Set this property to false to ignore polarization. This
property applies when the sensor specified in the Sensor property
is capable of simulating polarization.

1-845

phased.Radiator

Default: false

WeightsInputPort

Enable weights input

To specify weights, set this property to true and then use the
corresponding input argument when you invoke step. If you do
not want to specify weights, set this property to false.

Default: false

Methods clone Create radiator object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Radiate signals

Examples Radiate the signal from a single isotropic antenna.

ha = phased.IsotropicAntennaElement;
hr = phased.Radiator('Sensor',ha,'OperatingFrequency',300e6);
x = [1;1];
radiatingAngle = [30 10]';
y = step(hr,x,radiatingAngle);

Radiate a far field signal with a 5-element array.

1-846

phased.Radiator

ha = phased.ULA('NumElements',5);
hr = phased.Radiator('Sensor',ha,'OperatingFrequency',300e6);
x = [1;1];
radiatingAngle = [30 10; 20 0]'; % two directions
y = step(hr,x,radiatingAngle);

Radiate signal with a 3-element antenna array. Each antenna radiates
a separate signal to a separate direction.

ha = phased.ULA('NumElements',3);
hr = phased.Radiator('Sensor',ha,'OperatingFrequency',1e9,...

'CombineRadiatedSignals',false);
x = [1 2 3;1 2 3];
radiatingAngle = [10 0; 20 5; 45 2]'; % One angle for one antenna
y = step(hr,x,radiatingAngle);

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.Collector | phased.FreeSpace

1-847

phased.Radiator.clone

Purpose Create radiator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-848

phased.Radiator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-849

phased.Radiator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-850

phased.Radiator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the Radiator
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-851

phased.Radiator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-852

phased.Radiator.step

Purpose Radiate signals

Syntax Y = step(H,X,ANG)
Y = step(H,X,ANG,LAXES)
Y = step(H,X,ANG,WEIGHTS)
Y = step(H,X,ANG,STEERANGLE)
Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE)

Description Y = step(H,X,ANG) radiates signal X in the direction ANG. Y
is the radiated signal. The radiating process depends on the
CombineRadiatedSignals property of H, as follows:

• If CombineRadiatedSignals has the value true, each radiating
element or subarray radiates X in all the directions in ANG. Y
combines the outputs of all radiating elements or subarrays. If
the Sensor property of H contains subarrays, the radiating process
distributes the power equally among the elements of each subarray.

• If CombineRadiatedSignals has the value false, each radiating
element radiates X in only one direction in ANG. Each column of Y
contains the output of the corresponding element. The false option is
available when the Sensor property of H does not contain subarrays.

Y = step(H,X,ANG,LAXES) uses LAXES as the local coordinate
system axes directions. This syntax is available when you set the
EnablePolarization property to true.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This
syntax is available when you set the WeightsInputPort property to
true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray
steering angle. This syntax is available when you configure
H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE) combines all
input arguments. This syntax is available when you configure
H so that H.EnablePolarization is true, H.WeightsInputPort

1-853

phased.Radiator.step

is true, H.Sensor is an array that contains subarrays, and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Radiator object.

X

Signals to radiate. X can be either a vector or a matrix.

If X is a vector, that vector is radiated through all radiating
elements or subarrays. The computation does not divide the
signal’s power among elements or subarrays, but rather treats
the X vector the same as a matrix in which each column equals
this vector.

If X is a matrix, the number of columns of X must equal the
number of subarrays if H.Sensor is an array that contains
subarrays, or the number of radiating elements otherwise. Each
column of X is radiated by the corresponding element or subarray.

ANG

Radiating directions of signals. ANG is a two-row matrix. Each
column specifies a radiating direction in the form [AzimuthAngle;
ElevationAngle], in degrees.

LAXES

1-854

phased.Radiator.step

Local coordinate system. LAXES is a 3-by-3 matrix whose columns
specify the local coordinate system’s orthonormal x, y, and z axes,
respectively. Each axis is specified in terms of [x;y;z] with
respect to the global coordinate system. This argument is only
used when the EnablePolarization property is set to true.

WEIGHTS

Vector of weights. WEIGHTS is a column vector whose length
equals the number of radiating elements or subarrays.

STEERANGLE

Subarray steering angle, specified as a length-2 column vector.
The vector has the form [azimuth; elevation], in degrees. The
azimuth angle must be between –180 and 180 degrees, inclusive.
The elevation angle must be between –90° and 90°, inclusive.

Output
Arguments

Y

Radiated signals

• If the EnablePolarization property value is set to false, the
output argument Y is a matrix. The number of columns of the
matrix equals the number of radiating signals. Each column
of Y contains a separate radiating signal. The number of
radiating signals depends upon the CombineRadiatedSignals
property of H.

• If the EnablePolarization property value is set to true, Y is a
row vector of elements of MATLAB struct type. The length of
the struct vector equals the number of radiating signals. Each
struct contains a separate radiating signal. The number of
radiating signals depends upon the CombineRadiatedSignals
property of H. Each struct contains three column-vector fields,
X, Y, and Z. These fields represent the x, y, and z components
of the polarized wave vector signal in the global coordinate
system.

1-855

phased.Radiator.step

Examples Radiating from a 5-Element ULA

Combine the radiation from five isotropic antenna elements.

Set up a uniform line array of five isotropic antennas. Then, construct
the radiator object.

ha = phased.ULA('NumElements',5);
% construct the radiator object
hr = phased.Radiator('Sensor',ha,...

'OperatingFrequency',300e6,'CombineRadiatedSignals',true);
% simple signal to radiate
x = [1;1];
% radiating direction in azimuth and elevation
radiatingAngle = [30; 10];
% use the step method to radiate the signal
y = step(hr,x,radiatingAngle);

Radiating from a 5-Element ULA of Polarized Antennas

Combine the radiation from five short-dipole antenna elements.

Set up a uniform line array of five short-dipole antennas with
polarization enabled. Then, construct the radiator object.

hsd = phased.ShortDipoleAntennaElement;
ha = phased.ULA('Element',hsd,'NumElements',5);
hr = phased.Radiator('Sensor',ha,...

'OperatingFrequency',300e6,'CombineRadiatedSignals',true,'EnablePolar

Rotate the local coordinate system by 10° around the x-axis.
Demonstrate that the output represents a polarized field.

x = [1;1];
radiatingAngle = [30 30; 0 20];
y = step(hr,x,radiatingAngle,rotx(10))

y =

1x2 struct array with fields:

1-856

phased.Radiator.step

X
Y
Z

1-857

phased.RangeDopplerResponse

Purpose Range-Doppler response

Description The RangeDopplerResponse object calculates the range-Doppler
response of input data.

To compute the range-Doppler response:

1 Define and set up your range-Doppler response calculator. See
“Construction” on page 1-858.

2 Call step to compute the range-Doppler response of the input signal
according to the properties of phased.RangeDopplerResponse. The
behavior of step is specific to each object in the toolbox.

Construction H = phased.RangeDopplerResponse creates a range-Doppler response
System object, H. The object calculates the range-Doppler response of
the input data.

H = phased.RangeDopplerResponse(Name,Value) creates a
range-Doppler response object, H, with additional options specified by
one or more Name,Value pair arguments. Name is a property name,
and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any
order as Name1,Value1, ,NameN,ValueN.

Properties RangeMethod

Method of range processing

Specify the method of range processing as 'Matched filter'
or 'Dechirp'.

1-858

phased.RangeDopplerResponse

'Matched filter' Algorithm applies a matched filter to the
incoming signal. This approach is common
with pulsed signals, where the matched
filter is the time reverse of the transmitted
signal.

'Dechirp' Algorithm mixes the incoming signal
with a reference signal. This approach is
common with FMCW signals, where the
reference signal is the transmitted signal.
This approach can also apply to a system
that uses linear FM pulsed signals.

Default: 'Matched filter'

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default
value corresponds to 1 MHz.

Default: 1e6

SweepSlope

FM sweep slope

Specify the slope of the linear FM sweeping, in hertz per second,
as a scalar. The x data you provide to step or plotResponse must
correspond to sweeps having this slope.

1-859

phased.RangeDopplerResponse

This property applies only when you set the RangeMethod property
to 'Dechirp'.

Default: 1e9

DechirpInput

Whether to dechirp input signal

Set this property to true to have the range-Doppler response
object dechirp the input signal. Set this property to false to
indicate that the input signal is already dechirped and no dechirp
operation is necessary. This property applies only when you set
the RangeMethod property to 'Dechirp'.

Default: false

DecimationFactor

Decimation factor for dechirped signal

Specify the decimation factor for the dechirped signal as a
positive integer. When processing FMCW signals, you can often
decimate the dechirped signal to reduce the requirements on the
analog-to-digital converter.

This property applies only when you set the RangeMethod
property to 'Dechirp' and the DechirpInput property to true.
The default value indicates no decimation.

Default: 1

RangeFFTLengthSource

Source of FFT length in range processing

Specify how the object determines the FFT length in range
processing. Values of this property are:

1-860

phased.RangeDopplerResponse

'Auto' The FFT length equals the number of rows
of the input signal.

'Property' The RangeFFTLength property of this
object specifies the FFT length.

This property applies only when you set the RangeMethod property
to 'Dechirp'.

Default: 'Auto'

RangeFFTLength

FFT length in range processing

Specify the FFT length in the range domain as a positive integer.
This property applies only when you set the RangeMethod
property to 'Dechirp' and the RangeFFTLengthSource property
to 'Property'.

Default: 1024

RangeWindow

Window for range weighting

Specify the window used for range processing using one of
'None', 'Hamming', 'Chebyshev', 'Hann', 'Kaiser', 'Taylor',
or 'Custom'. If you set this property to 'Taylor', the generated
Taylor window has four nearly constant sidelobes adjacent to
the mainlobe. This property applies only when you set the
RangeMethod property to 'Dechirp'.

Default: 'None'

RangeSidelobeAttenuation

Sidelobe attenuation level for range processing

1-861

phased.RangeDopplerResponse

Specify the sidelobe attenuation level of a Kaiser, Chebyshev, or
Taylor window in range processing as a positive scalar, in decibels.
This property applies only when you set the RangeMethod property
to 'Dechirp' and the RangeWindow property to 'Kaiser',
'Chebyshev', or 'Taylor'.

Default: 30

CustomRangeWindow

User-defined window for range processing

Specify the user-defined window for range processing using
a function handle or a cell array. This property applies only
when you set the RangeMethod property to 'Dechirp' and the
RangeWindow property to 'Custom'.

If CustomRangeWindow is a function handle, the specified function
takes the window length as the input and generates appropriate
window coefficients.

If CustomRangeWindow is a cell array, then the first cell must
be a function handle. The specified function takes the window
length as the first input argument, with other additional input
arguments, if necessary. The function then generates appropriate
window coefficients. The remaining entries in the cell array are
the additional input arguments to the function, if any.

Default: @hamming

DopplerFFTLengthSource

Source of FFT length in Doppler processing

Specify how the object determines the FFT length in Doppler
processing. Values of this property are:

1-862

phased.RangeDopplerResponse

'Auto' The FFT length is equal to the number of
rows of the input signal.

'Property' The DopplerFFTLength property of this
object specifies the FFT length.

This property applies only when you set the RangeMethod property
to 'Dechirp'.

Default: 'Auto'

DopplerFFTLength

FFT length in Doppler processing

Specify the FFT length in Doppler processing as a positive integer.
This property applies only when you set the RangeMethod property
to 'Dechirp' and the DopplerFFTLengthSource property to
'Property'.

Default: 1024

DopplerWindow

Window for Doppler weighting

Specify the window used for Doppler processing using one of
'None', 'Hamming', 'Chebyshev', 'Hann', 'Kaiser', 'Taylor',
or 'Custom'. If you set this property to 'Taylor', the generated
Taylor window has four nearly constant sidelobes adjacent to
the mainlobe. This property applies only when you set the
RangeMethod property to 'Dechirp'.

Default: 'None'

DopplerSidelobeAttenuation

Sidelobe attenuation level for Doppler processing

1-863

phased.RangeDopplerResponse

Specify the sidelobe attenuation level of a Kaiser, Chebyshev,
or Taylor window in Doppler processing as a positive scalar,
in decibels. This property applies only when you set the
RangeMethod property to 'Dechirp' and the DopplerWindow
property to 'Kaiser', 'Chebyshev', or 'Taylor'.

Default: 30

CustomDopplerWindow

User-defined window for Doppler processing

Specify the user-defined window for Doppler processing using
a function handle or a cell array. This property applies only
when you set the RangeMethod property to 'Dechirp' and the
DopplerWindow property to 'Custom'.

If CustomDopplerWindow is a function handle, the specified
function takes the window length as the input and generates
appropriate window coefficients.

If CustomDopplerWindow is a cell array, then the first cell must
be a function handle. The specified function takes the window
length as the first input argument, with other additional input
arguments, if necessary. The function then generates appropriate
window coefficients. The remaining entries in the cell array are
the additional input arguments to the function, if any.

Default: @hamming

DopplerOutput

Doppler domain output

Specify the Doppler domain output as 'Frequency' or 'Speed'.
The Doppler domain output is the DOP_GRID argument of step.

1-864

phased.RangeDopplerResponse

'Frequency' DOP_GRID is the Doppler shift, in hertz.

'Speed' DOP_GRID is the radial speed corresponding
to the Doppler shift, in meters per second.

Default: 'Frequency'

OperatingFrequency

Signal carrier frequency

Specify the carrier frequency, in hertz, as a scalar. This property
applies only when you set the DopplerOutput property to 'Speed'.
The default value of this property corresponds to 300 MHz.

Default: 3e8

Methods clone Create range-Doppler response
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotResponse Plot range-Doppler response

release Allow property value and input
characteristics changes

step Calculate range-Doppler response

1-865

phased.RangeDopplerResponse

Examples Range-Doppler Response of Pulsed Radar Signal Using
Matched Filter

Load data for a pulsed radar signal. The signal includes three target
returns. Two targets are approximately 2000 m away, while the third
is approximately 3500 m away. In addition, two of the targets are
stationary relative to the radar. The third is moving away from the
radar at about 100 m/s.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...
'DopplerFFTLengthSource','Property',...
'DopplerFFTLength',RangeDopplerEx_MF_NFFTDOP,...
'SampleRate',RangeDopplerEx_MF_Fs,...
'DopplerOutput','Speed',...
'OperatingFrequency',RangeDopplerEx_MF_Fc);

Calculate the range-Doppler response.

[resp,rng_grid,dop_grid] = step(hrdresp,...
RangeDopplerEx_MF_X,RangeDopplerEx_MF_Coeff);

Plot the range-Doppler map.

imagesc(dop_grid,rng_grid,mag2db(abs(resp)));
xlabel('Speed (m/s)');
ylabel('Range (m)');
title('Range-Doppler Map');

1-866

phased.RangeDopplerResponse

Range-Doppler Response of FMCW Signal

Load data for an FMCW signal that has not been dechirped. The signal
contains the return from a target about 2200 m away. The signal has a
normalized Doppler frequency of about –0.36 relative to the radar.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...
'RangeMethod','Dechirp',...
'PropagationSpeed',RangeDopplerEx_Dechirp_PropSpeed,...
'SampleRate',RangeDopplerEx_Dechirp_Fs,...
'DechirpInput',true,...
'SweepSlope',RangeDopplerEx_Dechirp_SweepSlope);

1-867

phased.RangeDopplerResponse

Plot the range-Doppler response.

plotResponse(hrdresp,...
RangeDopplerEx_Dechirp_X,RangeDopplerEx_Dechirp_Xref,...
'Unit','db','NormalizeDoppler',true)

Algorithms The RangeDopplerResponse object generates the response as follows:

1 Processes the input signal in the range domain using either a
matched filter or dechirp operation.

2 Processes in the Doppler domain using an FFT.

The decimation algorithm uses a 30th order FIR filter generated by
fir1(30,1/R), where R is the value of the DecimationFactor property.

1-868

phased.RangeDopplerResponse

See Also phased.AngleDopplerResponse | phased.MatchedFilter | dechirp

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

1-869

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

phased.RangeDopplerResponse.clone

Purpose Create range-Doppler response object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-870

phased.RangeDopplerResponse.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-871

phased.RangeDopplerResponse.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-872

phased.RangeDopplerResponse.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
RangeDopplerResponse System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-873

phased.RangeDopplerResponse.plotResponse

Purpose Plot range-Doppler response

Syntax plotResponse(H,x)
plotResponse(H,x,xref)
plotResponse(H,x,coeff)
plotResponse(___ ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,x) plots the range-Doppler response of the input
signal, x, in decibels. This syntax is available when you set the
RangeMethod property to 'Dechirp' and the DechirpInput property to
false.

plotResponse(H,x,xref) plots the range-Doppler response after
performing a dechirp operation on x using the reference signal, xref.
This syntax is available when you set the RangeMethod property to
'Dechirp' and the DechirpInput property to true.

plotResponse(H,x,coeff) plots the range-Doppler response after
performing a matched filter operation on x using the matched filter
coefficients in coeff. This syntax is available when you set the
RangeMethod property to 'Matched filter'.

plotResponse(___ ,Name,Value) plots the angle-Doppler response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns the handle of the image in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Range-Doppler response object.

x

Input data. Specific requirements depend on the syntax:

1-874

phased.RangeDopplerResponse.plotResponse

• In the syntax plotResponse(H,x), each column of the matrix x
represents a dechirped signal from one frequency sweep. The
function assumes all sweeps in x are consecutive.

• In the syntax plotResponse(H,x,xref), each column of the
matrix x represents a signal from one frequency sweep. The
function assumes all sweeps in x are consecutive and have not
been dechirped yet.

• In the syntax plotResponse(H,x,coeff), each column of the
matrix x represents a signal from one pulse. The function
assumes all pulses in x are consecutive.

In the case of an FMCW waveform with a triangle sweep,
the sweeps alternate between positive and negative slopes.
However, phased.RangeDopplerResponse is designed to
process consecutive sweeps of the same slope. To apply
phased.RangeDopplerResponse for a triangle-sweep system, use
one of the following approaches:

• Specify a positive SweepSlope property value, with x
corresponding to upsweeps only. In the plot, change the tick
mark labels on the horizontal axis to reflect that the Doppler or
speed values are half of what the plot shows by default.

• Specify a negative SweepSlope property value, with x
corresponding to downsweeps only. In the plot, change the tick
mark labels on the horizontal axis to reflect that the Doppler or
speed values are half of what the plot shows by default.

xref

Reference signal, specified as a column vector having the same
number of rows as x.

coeff

Matched filter coefficients, specified as a column vector.

1-875

phased.RangeDopplerResponse.plotResponse

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’NormalizeDoppler’

Set this value to true to normalize the Doppler frequency. Set
this value to false to plot the range-Doppler response without
normalizing the Doppler frequency. This parameter applies when
you set the DopplerOutput property of H to 'Frequency'.

Default: false

’Unit’

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Range-Doppler Response of FMCW Signal

Load data for an FMCW signal that has not been dechirped. The signal
contains the return from a target about 2200 m away. The signal has a
normalized Doppler frequency of about –0.36 relative to the radar.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...
'RangeMethod','Dechirp',...
'PropagationSpeed',RangeDopplerEx_Dechirp_PropSpeed,...
'SampleRate',RangeDopplerEx_Dechirp_Fs,...
'DechirpInput',true,...
'SweepSlope',RangeDopplerEx_Dechirp_SweepSlope);

1-876

phased.RangeDopplerResponse.plotResponse

Plot the range-Doppler response.

plotResponse(hrdresp,...
RangeDopplerEx_Dechirp_X,RangeDopplerEx_Dechirp_Xref,...
'Unit','db','NormalizeDoppler',true)

See Also phased.AngleDopplerResponse.plotResponse

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

1-877

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

phased.RangeDopplerResponse.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-878

phased.RangeDopplerResponse.step

Purpose Calculate range-Doppler response

Syntax [RESP,RNG_GRID,DOP_GRID] = step(H,x)
[RESP,RNG_GRID,DOP_GRID] = step(H,x,xref)
[RESP,RNG_GRID,DOP_GRID] = step(H,x,coeff)

Description [RESP,RNG_GRID,DOP_GRID] = step(H,x) calculates the angle-Doppler
response of the input signal, x. RESP is the complex range-Doppler
response. RNG_GRID and DOP_GRID provide the range samples and
Doppler samples, respectively, at which the range-Doppler response
is evaluated. This syntax is available when you set the RangeMethod
property to 'Dechirp' and the DechirpInput property to false. This
syntax is most commonly used with FMCW signals.

[RESP,RNG_GRID,DOP_GRID] = step(H,x,xref) uses xref as the
reference signal to dechirp x. This syntax is available when you set the
RangeMethod property to 'Dechirp' and the DechirpInput property to
true. This syntax is most commonly used with FMCW signals, where
the reference signal is typically the transmitted signal.

[RESP,RNG_GRID,DOP_GRID] = step(H,x,coeff) uses coeff as the
matched filter coefficients. This syntax is available when you set the
RangeMethod property to 'Matched filter'. This syntax is most
commonly used with pulsed signals, where the matched filter is the
time reverse of the transmitted signal.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

1-879

phased.RangeDopplerResponse.step

Input
Arguments

H

Range-Doppler response object.

x

Input data. Specific requirements depend on the syntax:

• In the syntax step(H,x), each column of the matrix x
represents a dechirped signal from one frequency sweep. The
function assumes all sweeps in x are consecutive.

• In the syntax step(H,x,xref), each column of the matrix x
represents a signal from one frequency sweep. The function
assumes all sweeps in x are consecutive and have not been
dechirped yet.

• In the syntax step(H,x,coeff), each column of the matrix x
represents a signal from one pulse. The function assumes all
pulses in x are consecutive.

In the case of an FMCW waveform with a triangle sweep,
the sweeps alternate between positive and negative slopes.
However, phased.RangeDopplerResponse is designed to
process consecutive sweeps of the same slope. To apply
phased.RangeDopplerResponse for a triangle-sweep system, use
one of the following approaches:

• Specify a positive SweepSlope property value, with x
corresponding to upsweeps only. After obtaining the Doppler or
speed values, divide them by 2.

• Specify a negative SweepSlope property value, with x
corresponding to downsweeps only. After obtaining the Doppler
or speed values, divide them by 2.

xref

Reference signal, specified as a column vector having the same
number of rows as x.

1-880

phased.RangeDopplerResponse.step

coeff

Matched filter coefficients, specified as a column vector.

Output
Arguments

RESP

Complex range-Doppler response of x, returned as a P-by-Q
matrix. The values of P and Q depend on the syntax.

Syntax Values of P and Q

step(H,x) If you set the RangeFFTLength
property to 'Auto', P is
the number of rows in x.
Otherwise, P is the value of
the RangeFFTLength property.

If you set the
DopplerFFTLength property
to 'Auto', Q is the number of
columns in x. Otherwise,
Q is the value of the
DopplerFFTLength property.

step(H,x,xref) P is the quotient between
the number of rows of
x and the value of the
DecimationFactor property.

If you set the
DopplerFFTLength property
to 'Auto', Q is the number of
columns in x. Otherwise,
Q is the value of the
DopplerFFTLength property.

step(H,x,coeff) P is the number of rows of x.

If you set the
DopplerFFTLength property
to 'Auto', Q is the number of

1-881

phased.RangeDopplerResponse.step

Syntax Values of P and Q

columns in x. Otherwise,
Q is the value of the
DopplerFFTLength property.

RNG_GRID

Range samples at which the range-Doppler response is evaluated.
RNG_GRID is a column vector of length P.

DOP_GRID

Doppler samples or speed samples at which the range-Doppler
response is evaluated. DOP_GRID is a column vector of length Q.
Whether DOP_GRID contains Doppler or speed samples depends
on the DopplerOutput property of H.

Examples Range-Doppler Response of Pulsed Radar Signal Using
Matched Filter

Load data for a pulsed radar signal. The signal includes three target
returns. Two targets are approximately 2000 m away, while the third
is approximately 3500 m away. In addition, two of the targets are
stationary relative to the radar. The third is moving away from the
radar at about 100 m/s.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...
'DopplerFFTLengthSource','Property',...
'DopplerFFTLength',RangeDopplerEx_MF_NFFTDOP,...
'SampleRate',RangeDopplerEx_MF_Fs,...
'DopplerOutput','Speed',...
'OperatingFrequency',RangeDopplerEx_MF_Fc);

Calculate the range-Doppler response.

1-882

phased.RangeDopplerResponse.step

[resp,rng_grid,dop_grid] = step(hrdresp,...
RangeDopplerEx_MF_X,RangeDopplerEx_MF_Coeff);

Plot the range-Doppler map.

imagesc(dop_grid,rng_grid,mag2db(abs(resp)));
xlabel('Speed (m/s)');
ylabel('Range (m)');
title('Range-Doppler Map');

Estimation of Doppler and Range from Range-Doppler
Response Data

Load data for an FMCW signal that has not been dechirped. The signal
contains the return from one target.

load RangeDopplerExampleData;

1-883

phased.RangeDopplerResponse.step

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...
'RangeMethod','Dechirp',...
'PropagationSpeed',RangeDopplerEx_Dechirp_PropSpeed,...
'SampleRate',RangeDopplerEx_Dechirp_Fs,...
'DechirpInput',true,...
'SweepSlope',RangeDopplerEx_Dechirp_SweepSlope);

Obtain the range-Doppler response data.

[resp,rng_grid,dop_grid] = step(hrdresp,...
RangeDopplerEx_Dechirp_X,RangeDopplerEx_Dechirp_Xref);

Estimate the range and Doppler based on the map.

[x_temp,idx_temp] = max(abs(resp));
[~,dop_idx] = max(x_temp);
rng_idx = idx_temp(dop_idx);
dop_est = dop_grid(dop_idx)
rng_est = rng_grid(rng_idx)

dop_est =

-712.8906

rng_est =

2250

The target is approximately 2250 m away, and it is moving fast enough
to cause a Doppler shift of approximately –713 Hz.

1-884

phased.ReceiverPreamp

Purpose Receiver preamp

Description The ReceiverPreamp object implements a receiver preamp.

To model a receiver preamp:

1 Define and set up your receiver preamp. See “Construction” on page
1-885.

2 Call step to amplify the input signal according to the properties of
phased.ReceiverPreamp. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.ReceiverPreamp creates a receiver preamp System object,
H. The object receives the incoming pulses.

H = phased.ReceiverPreamp(Name,Value) creates a receiver preamp
object, H, with each specified property Name set to the specified Value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties Gain

Gain of receiver

A scalar containing the gain (in decibels) of the receiver preamp.

Default: 20

LossFactor

Loss factor of receiver

A scalar containing the loss factor (in decibels) of the receiver
preamp.

Default: 0

NoiseBandwidth

1-885

phased.ReceiverPreamp

Noise bandwidth of receiver

A scalar containing the bandwidth of noise spectrum (in hertz) at
the receiver preamp. If the receiver has multiple channels/sensors,
the noise bandwidth applies to each channel/sensor.

Default: 1e6

NoiseFigure

Noise figure of receiver

A scalar containing the noise figure (in decibels) of the receiver
preamp. If the receiver has multiple channels/sensors, the noise
figure applies to each channel/sensor.

Default: 0

ReferenceTemperature

Reference temperature of receiver

A scalar containing the reference temperature of the receiver
(in kelvin). If the receiver has multiple channels/sensors, the
reference temperature applies to each channel/sensor.

Default: 290

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default
value corresponds to 1 MHz.

Default: 1e6

EnableInputPort

Add input to specify enabling signal

1-886

phased.ReceiverPreamp

To specify a receiver enabling signal, set this property to true and
use the corresponding input argument when you invoke step.
If you do not want to specify a receiver enabling signal, set this
property to false.

Default: false

PhaseNoiseInputPort

Add input to specify phase noise

To specify the phase noise for each incoming sample, set this
property to true and use the corresponding input argument
when you invoke step. You can use this information to emulate
coherent-on-receive systems. If you do not want to specify phase
noise, set this property to false.

Default: false

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this
property are:

'Auto' The default MATLAB random number
generator produces the random numbers.
Use 'Auto' if you are using this object
with Parallel Computing Toolbox software.

'Property' The object uses its own private random
number generator to produce random
numbers. The Seed property of this object
specifies the seed of the random number
generator. Use 'Property' if you want
repeatable results and are not using this
object with Parallel Computing Toolbox
software.

1-887

phased.ReceiverPreamp

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232–1. This property applies when you set
the SeedSource property to 'Property'.

Default: 0

Methods clone Create receiver preamp object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

reset Reset random number generator
for noise generation

step Receive incoming signal

Examples Simulate the reception of a sine wave.

Hrx = phased.ReceiverPreamp('NoiseFigure',10);
Fs = 100;
t = linspace(0,1-1/Fs,100);
x = 1e-6*sin(2*pi*5*t);
y = step(Hrx,x);
plot(t,x,t,real(y));

1-888

phased.ReceiverPreamp

xlabel('Time (s)'); ylabel('Amplitude');
legend('Original signal','Received signal');

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

1-889

phased.ReceiverPreamp

See Also phased.Collector | phased.Transmitter

Concepts • “Receiver Preamp”

1-890

phased.ReceiverPreamp.clone

Purpose Create receiver preamp object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-891

phased.ReceiverPreamp.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-892

phased.ReceiverPreamp.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-893

phased.ReceiverPreamp.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ReceiverPreamp System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-894

phased.ReceiverPreamp.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-895

phased.ReceiverPreamp.reset

Purpose Reset random number generator for noise generation

Syntax reset(H)

Description reset(H) resets the states of the ReceiverPreamp object, H. This
method resets the random number generator state if the SeedSource
property is set to 'Property'.

1-896

phased.ReceiverPreamp.step

Purpose Receive incoming signal

Syntax Y = step(H,X)
Y = step(H,X,EN_RX)
Y = step(H,X,PHNOISE)
Y = step(H,X,EN_RX,PHNOISE)

Description Y = step(H,X) applies the receiver gain and the receiver noise to the
input signal, X, and returns the resulting output signal, Y.

Y = step(H,X,EN_RX) uses input EN_RX as the enabling signal when
the EnableInputPort property is set to true.

Y = step(H,X,PHNOISE) uses input PHNOISE as the phase noise for
each sample in X when the PhaseNoiseInputPort is set to true. The
phase noise is the same for all channels in X. The elements in PHNOISE
represent the random phases the transmitter adds to the transmitted
pulses. The receiver preamp object removes these random phases from
all received samples returned within corresponding pulse intervals.
Such setup is often referred to as coherent on receive.

Y = step(H,X,EN_RX,PHNOISE) combines all input arguments. This
syntax is available when you configure H so that H.EnableInputPort
is true and H.PhaseNoiseInputPort is true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Receiver object.

1-897

phased.ReceiverPreamp.step

X

Input signal.

EN_RX

Enabling signal, specified as a column vector whose length equals
the number of rows in X. The data type of EN_RN is double or
logical. Every element of EN_RX that equals 0 or false indicates
that the receiver is turned off, and no input signal passes through
the receiver. Every element of EN_RX that is nonzero or true
indicates that the receiver is turned on, and the input passes
through.

PHNOISE

Phase noise for each sample in X, specified as a column vector
whose length equals the number of rows in X. You can obtain
PHNOISE as an optional output argument from the step method
of phased.Transmitter.

Output
Arguments

Y

Output signal. Y has the same dimensions as X.

Examples Construct a receiver preamp object with a noise figure of 5 dB and
bandwidth of 1 MHz. Demonstrate the effect of the receiver on a
received sinusoid.

% construct receiver preamp object
hrx = phased.ReceiverPreamp('NoiseFigure',5,'SampleRate',1e6,...

'NoiseBandwidth',1e6);
Fs = 1e3; t = linspace(0,1,1e3);
% signal at the receiver
x = cos(2*pi*200*t)';
% use the step method to obtain the signal demonstrating the
% effect of the receiver
y = step(hrx,x);

1-898

phased.RectangularWaveform

Purpose Rectangular pulse waveform

Description The RectangularWaveform object creates a rectangular pulse waveform.

To obtain waveform samples:

1 Define and set up your rectangular pulse waveform. See
“Construction” on page 1-899.

2 Call step to generate the rectangular pulse waveform samples
according to the properties of phased.RectangularWaveform. The
behavior of step is specific to each object in the toolbox.

Construction H = phased.RectangularWaveform creates a rectangular pulse
waveform System object, H. The object generates samples of a
rectangular pulse.

H = phased.RectangularWaveform(Name,Value) creates a rectangular
pulse waveform object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The quantity
(SampleRate ./ PRF) is a scalar or vector that must contain only
integers. The default value of this property corresponds to 1 MHz.

Default: 1e6

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar.
The value must satisfy PulseWidth <= 1./PRF.

Default: 50e-6

1-899

phased.RectangularWaveform

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (in hertz) as a scalar or a
row vector. The default value of this property corresponds to 10
kHz.

To implement a constant PRF, specify PRF as a positive scalar.
To implement a staggered PRF, specify PRF as a row vector with
positive elements. When PRF is a vector, the output pulses use
successive elements of the vector as the PRF. If the last element
of the vector is reached, the process continues cyclically with the
first element of the vector.

The value of this property must satisfy these constraints:

• PRF is less than or equal to (1/PulseWidth).

• (SampleRate ./ PRF) is a scalar or vector that contains only
integers.

Default: 1e4

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Pulses'
or 'Samples'. When you set the OutputFormat property to
'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the
NumPulses property.

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property.

Default: 'Pulses'

1-900

phased.RectangularWaveform

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method
as a positive integer. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as
a positive integer. This property applies only when you set the
OutputFormat property to 'Pulses'.

Default: 1

Methods bandwidth Bandwidth of rectangular pulse
waveform

clone Create rectangular waveform
object with same property values

getMatchedFilter Matched filter coefficients for
waveform

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plot Plot rectangular pulse waveform

1-901

phased.RectangularWaveform

release Allow property value and input
characteristics changes

reset Reset states of rectangular
waveform object

step Samples of rectangular pulse
waveform

Examples Create and plot a rectangular pulse waveform object.

hw = phased.RectangularWaveform('PulseWidth',1e-4);
plot(hw);

1-902

phased.RectangularWaveform

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also phased.LinearFMWaveform | phased.SteppedFMWaveform |
phased.PhaseCodedWaveform

Related
Examples

• Waveform Analysis Using the Ambiguity Function

1-903

../examples/waveform-analysis-using-the-ambiguity-function.html

phased.RectangularWaveform.bandwidth

Purpose Bandwidth of rectangular pulse waveform

Syntax BW = bandwidth(H)

Description BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses for
the rectangular pulse waveform, H. The bandwidth equals the reciprocal
of the pulse width.

Input
Arguments

H

Rectangular pulse waveform object.

Output
Arguments

BW

Bandwidth of the pulses, in hertz.

Examples Determine the bandwidth of a rectangular pulse waveform.

H = phased.RectangularWaveform;
bw = bandwidth(H)

1-904

phased.RectangularWaveform.clone

Purpose Create rectangular waveform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-905

phased.RectangularWaveform.getMatchedFilter

Purpose Matched filter coefficients for waveform

Syntax Coeff = getMatchedFilter(H)

Description Coeff = getMatchedFilter(H) returns the matched filter coefficients
for the rectangular waveform object H. Coeff is a column vector.

Examples Get the matched filter coefficients for a rectangular pulse.

hw = phased.RectangularWaveform('PulseWidth',1e-5,...
'OutputFormat','Pulses','NumPulses',1);

Coeff = getMatchedFilter(hw);

1-906

phased.RectangularWaveform.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-907

phased.RectangularWaveform.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-908

phased.RectangularWaveform.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
RectangularWaveform System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-909

phased.RectangularWaveform.plot

Purpose Plot rectangular pulse waveform

Syntax plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot(___)

Description plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options
specified by one or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line
style, or marker options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input
Arguments

Hwav

Waveform object. This variable must be a scalar that represents a
single waveform object.

LineSpec

String that specifies the same line color, style, or marker options
as are available in the MATLAB plot function. If you specify a
PlotType value of 'complex', then LineSpec applies to both the
real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’PlotType’

1-910

phased.RectangularWaveform.plot

Specifies whether the function plots the real part, imaginary part,
or both parts of the waveform. Valid values are 'real', 'imag',
and 'complex'.

Default: 'real'

’PulseIdx’

Index of the pulse to plot. This value must be a scalar.

Default: 1

Output
Arguments

h

Handle to the line or lines in the figure. For a PlotType value of
'complex', h is a column vector. The first and second elements of
this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples Create and plot a rectangular pulse waveform.

hw = phased.RectangularWaveform('PulseWidth',1e-4);
plot(hw);

1-911

phased.RectangularWaveform.plot

1-912

phased.RectangularWaveform.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-913

phased.RectangularWaveform.reset

Purpose Reset states of rectangular waveform object

Syntax reset(H)

Description reset(H) resets the states of the RectangularWaveform object, H.
Afterward, if the PRF property is a vector, the next call to step uses
the first PRF value in the vector.

1-914

phased.RectangularWaveform.step

Purpose Samples of rectangular pulse waveform

Syntax Y = step(H)

Description Y = step(H) returns samples of the rectangular pulse in a column
vector Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Construct a rectangular pulse 10 microseconds in duration with pulse
repetition interval of 100 microseconds.

hw = phased.RectangularWaveform('PulseWidth',1e-5,...
'OutputFormat','Pulses','NumPulses',1,...
'SampleRate',1e6,'PRF',1e4);

wav = step(hw);

1-915

phased.ReplicatedSubarray

Purpose Phased array formed by replicated subarrays

Description The ReplicatedSubarray object represents a phased array that
contains copies of a subarray.

To obtain the response of the subarrays:

1 Define and set up your phased array containing replicated subarrays.
See “Construction” on page 1-916.

2 Call step to compute the response of the subarrays according to the
properties of phased.ReplicatedSubarray. The behavior of step is
specific to each object in the toolbox.

You can also use a ReplicatedSubarray object as the value of the
SensorArray or Sensor property of objects that perform beamforming,
steering, and other operations.

Construction H = phased.ReplicatedSubarray creates a replicated subarray
System object, H. This object represents an array that contains copies of
a subarray.

H = phased.ReplicatedSubarray(Name,Value) creates a replicated
subarray object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties Subarray

Subarray to replicate

Specify the subarray you use to form the array. The subarray
must be a phased.ULA, phased.URA, or phased.ConformalArray
object.

Default: phased.ULA with default property values

Layout

1-916

phased.ReplicatedSubarray

Layout of subarrays

Specify the layout of the replicated subarrays as 'Rectangular'
or 'Custom'.

Default: 'Rectangular'

GridSize

Size of rectangular grid

Specify the size of the rectangular grid as a single positive integer
or 1-by-2 positive integer row vector. This property applies only
when you set the Layout property to 'Rectangular'.

If GridSize is a scalar, the array has the same number of
subarrays in each row and column.

If GridSize is a 1-by-2 vector, the vector has the form
[NumberOfRows, NumberOfColumns]. The first entry is the
number of subarrays along each column, while the second entry
is the number of subarrays in each row. A row is along the local
y-axis, and a column is along the local z-axis. This figure shows
how a 3-by-2 URA subarray is replicated using a GridSize value
of [1,2].

1-917

phased.ReplicatedSubarray

3 x 2 Element URA
Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Default: [2 1]

GridSpacing

Spacing of rectangular grid

Specify the rectangular grid spacing of subarrays as a real-valued
positive scalar, a 1-by-2 row vector, or the string value 'Auto'.
This property applies only when you set the Layout property to
'Rectangular'. Grid spacing units are expressed in meters.

If GridSpacing is a scalar, the spacing along the row and the
spacing along the column is the same.

If GridSpacing is a length-2 row vector, it has the form
[SpacingBetweenRows, SpacingBetweenColumn]. The first
entry specifies the spacing between rows along a column. The
second entry specifies the spacing between columns along a row.

If GridSpacing is 'Auto', the replication preserves the element
spacing in both row and column. This option is available only if
you use a phased.ULA or phased.URA object as the subarray.

Default: 'Auto'

1-918

phased.ReplicatedSubarray

SubarrayPosition

Subarray positions in custom grid

Specify the positions of the subarrays in the custom grid. This
property value is a 3-by-N matrix, where N indicates the number
of subarrays in the array. Each column of the matrix represents
the position of a single subarray in the array’s local coordinate
system, in meters, using the form [x; y; z].

This property applies when you set the Layout property to
'Custom'.

Default: [0 0; -0.5 0.5; 0 0]

SubarrayNormal

Subarray normal directions in custom grid

Specify the normal directions of the subarrays in the array.
This property value is a 2-by-N matrix, where N is the number
of subarrays in the array. Each column of the matrix specifies
the normal direction of the corresponding subarray, in the form
[azimuth; elevation]. Each angle is in degrees and is defined in
the local coordinate system.

You can use the SubarrayPosition and SubarrayNormal
properties to represent any arrangement in which pairs of
subarrays differ by certain transformations. The transformations
can combine translation, azimuth rotation, and elevation rotation.
However, you cannot use transformations that require rotation
about the normal.

This property applies when you set the Layout property to
'Custom'.

Default: [0 0; 0 0]

SubarraySteering

Subarray steering method

1-919

phased.ReplicatedSubarray

Specify the method of steering the subarray as one of 'None' |
'Phase' | 'Time'.

Default: 'None'

PhaseShifterFrequency

Subarray phase shifter frequency

Specify the operating frequency of phase shifters that perform
subarray steering. The property value is a positive scalar in
hertz. This property applies when you set the SubarraySteering
property to 'Phase'.

Default: 3e8

Methods clone Create replicated subarray with
same property values

collectPlaneWave Simulate received plane waves

getElementPosition Positions of array elements

getNumElements Number of elements in array

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

getNumSubarrays Number of subarrays in array

getSubarrayPosition Positions of subarrays in array

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotResponse Plot response pattern of array

1-920

phased.ReplicatedSubarray

release Allow property value and input
characteristics changes

step Output responses of subarrays

viewArray View array geometry

Examples Azimuth Response of Array with Subarrays

Plot the azimuth response of a 4-element ULA composed of two
2-element ULAs.

Create a 2-element ULA, and arrange two copies to form a 4-element
ULA.

h = phased.ULA('NumElements',2,'ElementSpacing',0.5);
ha = phased.ReplicatedSubarray('Subarray',h,...

'Layout','Rectangular','GridSize',[1 2],...
'GridSpacing','Auto');

Plot the azimuth response of the array. Assume the operating frequency
is 1 GHz and the wave propagation speed is 3e8 m/s.

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar');

1-921

phased.ReplicatedSubarray

Response of Subarrays with Polarized Antenna Elements

Calculate the response at boresight for two 2-element ULAs that are
subarrays of a 4-element ULA.

Create a two-element ULA of short-dipole antenna elements. Then,
arrange two copies to form a 4-element ULA.

hsd = phased.ShortDipoleAntennaElement;
h = phased.ULA('Element',hsd,'NumElements',2,'ElementSpacing',0.5);

1-922

phased.ReplicatedSubarray

ha = phased.ReplicatedSubarray('Subarray',h,...
'Layout','Rectangular','GridSize',[1 2],...
'GridSpacing','Auto');

Find the response of each subarray at boresight. Assume the operating
frequency is 1 GHz and the wave propagation speed is 3e8 m/s.

RESP = step(ha,1e9,[0;0],3e8)

RESP =

H: [2x1 double]
V: [2x1 double]

References [1] Mailloux, Robert J. Electronically Scanned Arrays. San Rafael, CA:
Morgan & Claypool Publishers, 2007.

[2] Mailloux, Robert J. Phased Array Antenna Handbook, 2nd Ed.
Norwood, MA: Artech House, 2005.

See Also phased.ULA | phased.URA | phased.ConformalArray |
phased.PartitionedArray

Related
Examples

• Subarrays in Phased Array Antennas
• Phased Array Gallery

Concepts • “Subarrays Within Arrays”

1-923

../examples/subarrays-in-phased-array-antennas.html
../examples/phased-array-gallery.html

phased.ReplicatedSubarray.clone

Purpose Create replicated subarray with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-924

phased.ReplicatedSubarray.collectPlaneWave

Purpose Simulate received plane waves

Syntax Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description Y = collectPlaneWave(H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave(H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

Input
Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

1-925

phased.ReplicatedSubarray.collectPlaneWave

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output
Arguments

Y

Received signals. Y is an N-column matrix, where N is the number
of subarrays in the array H. Each column of Y is the received
signal at the corresponding subarray, with all incoming signals
combined.

Examples Plane Waves Received at Array Containing Subarrays

Simulate the received signal at a 16-element ULA composed of four
4-element ULAs.

Create a 4-element ULA, and replicate it to create a 16-element ULA.

hs = phased.ULA('NumElements',4);
ha = phased.ReplicatedSubarray('Subarray',hs,...

'GridSize',[4 1]);

Simulate receiving signals from 10 degrees and 30 degrees azimuth.
Both signals have an elevation angle of 0 degrees. Assume the
propagation speed is the speed of light and the carrier frequency of the
signal is 100 MHz.

Y = collectPlaneWave(ha,randn(4,2),[10 30],...
1e8,physconst('LightSpeed'));

Algorithms collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. This
method does not account for the response of individual elements in the

1-926

phased.ReplicatedSubarray.collectPlaneWave

array and only models the array factor among subarrays. Therefore, the
result does not depend on whether the subarray is steered.

See Also uv2azel | phitheta2azel

1-927

phased.ReplicatedSubarray.getElementPosition

Purpose Positions of array elements

Syntax POS = getElementPosition(H)

Description POS = getElementPosition(H) returns the element positions in the
array H.

Input
Arguments

H

Array object consisting of replicated subarrays.

Output
Arguments

POS

Element positions in array. POS is a 3-by-N matrix, where N is
the number of elements in H. Each column of POS defines the
position of an element in the local coordinate system, in meters,
using the form [x; y; z].

Examples Positions of Elements in Array with Replicated Subarrays

Create an array with two copies of a 3-element ULA, and obtain the
positions of the elements.

H = phased.ReplicatedSubarray('Subarray',...

phased.ULA('NumElements',3),'GridSize',[1 2]);

POS = getElementPosition(H)

See Also getSubarrayPosition

1-928

phased.ReplicatedSubarray.getNumElements

Purpose Number of elements in array

Syntax N = getNumElements(H)

Description N = getNumElements(H) returns the number of elements in the array
object H. This number includes the elements in all subarrays of the
array.

Input
Arguments

H

Array object consisting of replicated subarrays.

Examples Number of Elements in Array with ReplicatedSubarrays

Create an array with two copies of a 3-element ULA, and obtain the
total number of elements.

H = phased.ReplicatedSubarray('Subarray',...
phased.ULA('NumElements',3),'GridSize',[1 2]);

N = getNumElements(H);

See Also getNumSubarrays

1-929

phased.ReplicatedSubarray.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-930

phased.ReplicatedSubarray.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-931

phased.ReplicatedSubarray.getNumSubarrays

Purpose Number of subarrays in array

Syntax N = getNumSubarrays(H)

Description N = getNumSubarrays(H) returns the number of subarrays in the
array object H.

Input
Arguments

H

Array object consisting of replicated subarrays.

Examples Number of Subarrays in Array

Create an array by tiling copies of a ULA in a 2-by-5 grid. Obtain the
number of subarrays.

H = phased.ReplicatedSubarray('Subarray',...
phased.ULA('NumElements',3),'GridSize',[2 5]);

N = getNumSubarrays(H);

See Also getNumElements

1-932

phased.ReplicatedSubarray.getSubarrayPosition

Purpose Positions of subarrays in array

Syntax POS = getSubarrayPosition(H)

Description POS = getSubarrayPosition(H) returns the subarray positions in
the array H.

Input
Arguments

H

Partitioned array object.

Output
Arguments

POS

Subarrays positions in array. POS is a 3-by-N matrix, where N is
the number of subarrays in H. Each column of POS defines the
position of a subarray in the local coordinate system, in meters,
using the form [x; y; z].

Examples Positions of Replicated Subarrays in Array

Create an array with two copies of a 3-element ULA, and obtain the
positions of the subarrays.

H = phased.ReplicatedSubarray('Subarray',...

phased.ULA('NumElements',3),'GridSize',[1 2]);

POS = getSubarrayPosition(H)

See Also getElementPosition

1-933

phased.ReplicatedSubarray.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ReplicatedSubarray System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-934

phased.ReplicatedSubarray.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the array supports polarization. An array supports
polarization if all of its constituent sensor elements support polarization.

Input
Arguments

h - Replicated subarray

Replicated subarray specified as a phased.ReplicatedSubarray
System object.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if
the array supports polarization or false if it does not.

Examples Replicated Array of Short Dipoles Supports Polarization

Verify that a replicated subarray of
phased.ShortDipoleAntennaElement short-dipole antenna elements
supports polarization.

h = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[1e9 10e9]);

ha = phased.URA([3,2],'Element',h);
hr = phased.ReplicatedSubarray('Subarray',ha,...

'Layout','Rectangular',...
'GridSize',[1,2],'GridSpacing','Auto');

isPolarizationCapable(hr)

ans =

1

The returned value true (1) shows that this array supports
polarization.

1-935

phased.ReplicatedSubarray.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Array object.

FREQ

Operating frequency, in hertz. Typical values are within the range
specified by a property of H.Subarray.Element. That property is
named FrequencyRange or FrequencyVector, depending on the
type of element in the array. The element has zero response at
frequencies outside that range. If FREQ is a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

1-936

phased.ReplicatedSubarray.plotResponse

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

Cut angle specified as a scalar. This argument is applicable only
when RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle
must be between –90 and 90. If RespCut is 'El', CutAngle must
be between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in
a 3-D waterfall plot. If this value is false, then FREQ must be a
vector with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

1-937

phased.ReplicatedSubarray.plotResponse

’Polarization’

Specify the polarization options for plotting the array response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where:

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’SteerAng’

Subarray steering angle. SteerAng can be either a 2-element
column vector or a scalar.

If SteerAng is a 2-element column vector, it has the form
[azimuth; elevation]. The azimuth angle must be between –180

1-938

phased.ReplicatedSubarray.plotResponse

and 180 degrees, inclusive. The elevation angle must be between
–90 and 90 degrees, inclusive.

If SteerAng is a scalar, it specifies the azimuth angle. In this
case, the elevation angle is assumed to be 0.

This option is applicable only if the SubarraySteering property
of H is 'Phase' or 'Time'.

Default: [0;0]

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’Weights’

Weight values applied to the array, specified as a length-N
column vector or N-by-M matrix. The dimension N is the number
of subarrays in the array. The interpretation of M depends upon
whether the input argument FREQ is a scalar or row vector.

1-939

phased.ReplicatedSubarray.plotResponse

Weights
Dimension

FREQ Dimension Purpose

N-by-1 column
vector

Scalar or 1-by-M
row vector

Apply one set
of weights for
the same single
frequency or all M
frequencies.

Scalar Apply all of the M
different columns
in Weights for
the same single
frequency.

N-by-M matrix
1-by-M row vector Apply each of theM

different columns
in Weights for
the corresponding
frequency in FREQ.

’AzimuthAngles’

Azimuth angles for plotting subarray response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting subarray response, specified as a row
vector. The ElevationAngles parameter sets the display range

1-940

phased.ReplicatedSubarray.plotResponse

and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When you set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

Default: [-90:90]

’UGrid’

U coordinate values for plotting subarray response, specified
as a row vector. The UGrid parameter sets the display range
and resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting subarray response, specified
as a row vector. The VGrid parameter sets the display range
and resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set the VGrid
and UGrid parameters simultaneously.

Default: [-1:0.01:1]

1-941

phased.ReplicatedSubarray.plotResponse

Examples Azimuth Response and Directivity of ULA with Subarrays

Plot the azimuth response of a 4-element ULA composed of two
2-element ULAs.

Create a 2-element ULA, and arrange two copies to form a 4-element
ULA.

h = phased.ULA('NumElements',2,'ElementSpacing',0.5);
ha = phased.ReplicatedSubarray('Subarray',h,...

'Layout','Rectangular','GridSize',[1 2],...
'GridSpacing','Auto');

Plot the azimuth response of the array. Assume the operating frequency
is 1 GHz and the wave propagation speed is 3e8 m/s.

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar');

1-942

phased.ReplicatedSubarray.plotResponse

Plot the azimuth directivity of the array.

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar','Unit','dbi');

1-943

phased.ReplicatedSubarray.plotResponse

Display Azimuth Response of Array with Subarrays Between
-30 and 30 Degrees

Create a 2-element ULA, and arrange two copies to form a 4-element
ULA. Using the AzimuthAngles parameter, plot the response within a
restricted range of azimuth angles from -30 to 30 degrees in 0.1 degree
increments.

h = phased.ULA('NumElements',2,'ElementSpacing',0.5);
ha = phased.ReplicatedSubarray('Subarray',h,...

1-944

phased.ReplicatedSubarray.plotResponse

'Layout','Rectangular','GridSize',[1 2],...
'GridSpacing','Auto');

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar',...
'AzimuthAngles',[-30:0.1:30],'Unit','mag');

Apply Two Sets of Weights at a Single Frequency

Construct an array of replicated subarrays. Start with a 2-element
uniform line array (ULA), and duplicate it 5 times to create a 10-element
ULA. Apply both uniform weights and tapered weights. Then, use

1-945

phased.ReplicatedSubarray.plotResponse

plotResponse to show that the tapered set of weights reduces the
adjacent sidelobes while broadening the main lobe.

h = phased.ULA('NumElements',2,'ElementSpacing',0.2);
ha = phased.ReplicatedSubarray('Subarray',h,...

'Layout','Rectangular','GridSize',[1 5],...
'GridSpacing',0.4);

c = physconst('LightSpeed');
fc = 1e9;
wts1 = [0.2,0.2,0.2,0.2,0.2]';
wts2 = [0.1,0.23333,.33333,0.23333,0.1]';
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar',...

'Weights',[wts1,wts2]);

1-946

phased.ReplicatedSubarray.plotResponse

See Also uv2azel | azel2uv

1-947

phased.ReplicatedSubarray.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-948

phased.ReplicatedSubarray.step

Purpose Output responses of subarrays

Syntax RESP = step(H,FREQ,ANG,V)
RESP = step(H,FREQ,ANG,V,STEERANGLE)

Description RESP = step(H,FREQ,ANG,V) returns the responses, RESP, of the
subarrays in the array, at operating frequencies specified in FREQ and
directions specified in ANG. V is the propagation speed. The elements
within each subarray are connected to the subarray phase center using
an equal-path feed.

RESP = step(H,FREQ,ANG,V,STEERANGLE) uses STEERANGLE as the
subarray’s steering direction. This syntax is available when you set the
SubarraySteering property to either 'Phase' or 'Time'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Phased array formed by replicated subarrays.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector
of length L. Typical values are within the range specified by
a property of H.Subarray.Element. That property is named
FrequencyRange or FrequencyVector, depending on the type
of element in the array. The element has zero response at
frequencies outside that range.

ANG

1-949

phased.ReplicatedSubarray.step

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

V

Propagation speed in meters per second. This value must be a
scalar.

STEERANGLE

Subarray steering direction. STEERANGLE can be either a
2-element column vector or a scalar.

If STEERANGLE is a 2-element column vector, it has the form
[azimuth; elevation]. The azimuth angle must be between –180
and 180 degrees, inclusive. The elevation angle must be between
–90 and 90 degrees, inclusive.

If STEERANGLE is a scalar, it specifies the direction’s azimuth
angle. In this case, the elevation angle is assumed to be 0.

Output
Arguments

RESP

Voltage responses of the subarrays of the phased array. The
output depends on whether the array supports polarization or not.

• If the array is not capable of supporting polarization, the
voltage response, RESP, has the dimensions N-by-M-by-L. The
first dimension, N , represents the number of subarrays in the
phased array, the second dimension, M, represents the number
of angles specified in ANG, while L represents the number of
frequencies specified in FREQ. Each column of RESP contains

1-950

phased.ReplicatedSubarray.step

the responses of the subarrays for the corresponding direction
specified in ANG. Each of the L pages of RESP contains the
responses of the subarrays for the corresponding frequency
specified in FREQ.

• If the array is capable of supporting polarization, the voltage
response, RESP, is a MATLAB struct containing two fields,
RESP.H and RESP.V, each having dimensions N-by-M-by-L. The
field, RESP.H, represents the array’s horizontal polarization
response, while RESP.V represents the array’s vertical
polarization response. The first dimension, N , represents
the number of subarrays in the phased array, the second
dimension, M, represents the number of angles specified in
ANG, while L represents the number of frequencies specified in
FREQ. Each of the M columns contains the responses of the
subarrays for the corresponding direction specified in ANG.
Each of the L pages contains the responses of the subarrays for
the corresponding frequency specified in FREQ.

Examples Response of Subarrays

Calculate the response at boresight for two 2-element ULA’s that are
subarrays of a 4-element ULA of short-dipole antenna elements.

Create a two-element ULA of short-dipole antenna elements. Then,
arrange two copies to form a 4-element ULA.

hsd = phased.ShortDipoleAntennaElement;
h = phased.ULA('Element',hsd,'NumElements',2,'ElementSpacing',0.5);
ha = phased.ReplicatedSubarray('Subarray',h,...

'Layout','Rectangular','GridSize',[1 2],...
'GridSpacing','Auto');

Find the response of each subarray at boresight. Assume the operating
frequency is 1 GHz and the wave propagation speed is 3e8 m/s.

RESP = step(ha,1e9,[0;0],3e8)

RESP =

1-951

phased.ReplicatedSubarray.step

H: [2x1 double]
V: [2x1 double]

See Also uv2azel | phitheta2azel

1-952

phased.ReplicatedSubarray.viewArray

Purpose View array geometry

Syntax viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray(___)

Description viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(___) returns the handles of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

Input
Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’ShowIndex’

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

’ShowNormals’

1-953

phased.ReplicatedSubarray.viewArray

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

’ShowTaper’

Set this value to true to specify whether to change the element
color brightness in proportion to the element taper magnitude.
When this value is set to false, all elements are drawn with the
same color.

Default: false

’ShowSubarray’

Vector specifying the indices of subarrays to highlight in the
figure. Each number in the vector must be an integer between
1 and the number of subarrays. You can also specify the string
'All' to highlight all subarrays of the array or 'None' to suppress
the subarray highlighting. The highlighting uses different colors
for different subarrays.

Default: 'All'

’Title’

String specifying the title of the plot.

Default: 'Array Geometry'

Output
Arguments

hPlot

Handles of array elements in figure window.

Examples Array of Replicated Hexagonal Arrays on a Sphere

Create a hexagonal array to use as a subarray.

1-954

phased.ReplicatedSubarray.viewArray

Nmin = 9; Nmax = 17;
dy = 0.5;
dz = 0.5*sin(pi/3);
rowlengths = [Nmin:Nmax Nmax-1:-1:Nmin];
numels_hex = sum(rowlengths);
stopvals = cumsum(rowlengths);
startvals = stopvals-rowlengths+1;
pos = zeros(3,numels_hex);
rowidx = 0;
for m = Nmin-Nmax:Nmax-Nmin

rowidx = rowidx+1;
idx = startvals(rowidx):stopvals(rowidx);
pos(2,idx) = (-(rowlengths(rowidx)-1)/2:...

(rowlengths(rowidx)-1)/2) * dy;
pos(3,idx) = m * dz;

end
hexa = phased.ConformalArray('ElementPosition',pos,...

'ElementNormal',zeros(2,numels_hex));

Arrange copies of the hexagonal array on a sphere.

radius = 9;
az = [-180 -180 -180 -120 -120 -60 -60 0 0 60 60 120 120 180];
el = [-90 -30 30 -30 30 -30 30 -30 30 -30 30 -30 30 90];
numsubarrays = size(az,2);
[x,y,z] = sph2cart(degtorad(az),degtorad(el),...

radius*ones(1,numsubarrays));
ha = phased.ReplicatedSubarray('Subarray',hexa,...

'Layout','Custom',...
'SubarrayPosition',[x; y; z], ...
'SubarrayNormal',[az; el]);

Display the geometry of the array, highlighting selected subarrays with
different colors.

viewArray(ha,'ShowSubarray',3:2:13,...
'Title','Hexagonal Subarrays on a Sphere');

view(0,90)

1-955

phased.ReplicatedSubarray.viewArray

See Also phased.ArrayResponse

Related
Examples

• Phased Array Gallery

1-956

../examples/phased-array-gallery.html

phased.RootMUSICEstimator

Purpose Root MUSIC direction of arrival (DOA) estimator

Description The RootMUSICEstimator object implements a root multiple signal
classification (MUSIC) direction of arrival estimate for a uniform linear
array.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page
1-957.

2 Call step to estimate the DOA according to the properties of
phased.RootMUSICEstimator. The behavior of step is specific to
each object in the toolbox.

Construction H = phased.RootMUSICEstimator creates a root MUSIC DOA
estimator System object, H. The object estimates the signal’s direction
of arrival using the root MUSIC algorithm with a uniform linear array
(ULA).

H = phased.RootMUSICEstimator(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-957

phased.RootMUSICEstimator

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to
estimate the covariance matrix as a nonnegative integer. Each
additional smoothing handles one extra coherent source, but
reduces the effective number of element by 1. The maximum
value of this property is M–2, where M is the number of sensors.
The default value indicates no spatial smoothing.

Default: 0

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto'
or 'Property'. If you set this property to 'Auto', the

1-958

phased.RootMUSICEstimator

number of signals is estimated by the method specified by the
NumSignalsMethod property.

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

Specify the method to estimate the number of signals as one of
'AIC' or 'MDL'. 'AIC' uses the Akaike Information Criterion and
'MDL' uses Minimum Description Length Criterion. This property
applies when you set the NumSignalsSource property to 'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This
property applies when you set the NumSignalsSource property
to 'Property'.

Default: 1

Methods clone Create root MUSIC DOA
estimator object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

1-959

phased.RootMUSICEstimator

release Allow property value and input
characteristics changes

step Perform DOA estimation

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 m. The antenna operating frequency is 150
MHz. The actual direction of the first signal is 10 degrees in azimuth
and 20 degrees in elevation. The direction of the second signal is 45
degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.RootMUSICEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2);

doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60])

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also broadside2az | phased.RootWSFEstimator

1-960

phased.RootMUSICEstimator.clone

Purpose Create root MUSIC DOA estimator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-961

phased.RootMUSICEstimator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-962

phased.RootMUSICEstimator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-963

phased.RootMUSICEstimator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
RootMUSICEstimator System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-964

phased.RootMUSICEstimator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-965

phased.RootMUSICEstimator.step

Purpose Perform DOA estimation

Syntax ANG = step(H,X)

Description ANG = step(H,X) estimates the DOAs from X using the DOA estimator
H. X is a matrix whose columns correspond to channels. ANG is a row
vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 m. The antenna operating frequency is 150
MHz. The actual direction of the first signal is 10 degrees in azimuth
and 20 degrees in elevation. The direction of the second signal is 45
degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.RootMUSICEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2);

doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60])

1-966

phased.RootWSFEstimator

Purpose Root WSF direction of arrival (DOA) estimator

Description The RootWSFEstimator object implements a root weighted subspace
fitting direction of arrival algorithm.

To estimate the direction of arrival (DOA):

1 Define and set up your root WSF DOA estimator. See “Construction”
on page 1-967.

2 Call step to estimate the DOA according to the properties of
phased.RootWSFEstimator. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.RootWSFEstimator creates a root WSF DOA estimator
System object, H. The object estimates the signal’s direction of arrival
using the root weighted subspace fitting (WSF) algorithm with a
uniform linear array (ULA).

H = phased.RootWSFEstimator(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-967

phased.RootWSFEstimator

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto'
or 'Property'. If you set this property to 'Auto', the
number of signals is estimated by the method specified by the
NumSignalsMethod property.

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

Specify the method to estimate the number of signals as one of
'AIC' or 'MDL'. 'AIC' uses the Akaike Information Criterion
and 'MDL' uses the Minimum Description Length Criterion. This
property applies when you set the NumSignalsSource property
to 'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This
property applies when you set the NumSignalsSource property
to 'Property'.

1-968

phased.RootWSFEstimator

Default: 1

Method

Iterative method

Specify the iterative method as one of 'IMODE' or 'IQML'.

Default: 'IMODE'

MaximumIterationCount

Maximum number of iterations

Specify the maximum number of iterations as a positive integer
scalar or 'Inf'. This property is tunable.

Default: 'Inf'

Methods clone Create root WSF DOA estimator
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform DOA estimation

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 m. The antenna operating frequency is 150
MHz. The actual direction of the first signal is 10 degrees in azimuth

1-969

phased.RootWSFEstimator

and 20 degrees in elevation. The direction of the second signal is 45
degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.RootWSFEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2);

doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60])

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also broadside2az | phased.RootMUSICEstimator

1-970

phased.RootWSFEstimator.clone

Purpose Create root WSF DOA estimator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-971

phased.RootWSFEstimator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-972

phased.RootWSFEstimator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-973

phased.RootWSFEstimator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
RootWSFEstimator System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-974

phased.RootWSFEstimator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-975

phased.RootWSFEstimator.step

Purpose Perform DOA estimation

Syntax ANG = step(H,X)

Description ANG = step(H,X) estimates the DOAs from X using the DOA estimator
H. X is a matrix whose columns correspond to channels. ANG is a row
vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 m. The antenna operating frequency is 150
MHz. The actual direction of the first signal is 10 degrees in azimuth
and 20 degrees in elevation. The direction of the second signal is 45
degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.RootWSFEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2);

doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60])

1-976

phased.STAPSMIBeamformer

Purpose Sample matrix inversion (SMI) beamformer

Description The SMIBeamformer object implements a sample matrix inversion
space-time adaptive beamformer. The beamformer works on the
space-time covariance matrix.

To compute the space-time beamformed signal:

1 Define and set up your SMI beamformer. See “Construction” on
page 1-977.

2 Call step to execute the SMI beamformer algorithm according to the
properties of phased.STAPSMIBeamformer. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.STAPSMIBeamformer creates a sample matrix inversion
(SMI) beamformer System object, H. The object performs the SMI
space-time adaptive processing (STAP) on the input data.

H = phased.STAPSMIBeamformer(Name,Value) creates an SMI object,
H, with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Sensor array

Sensor array specified as an array System object belonging to the
phased package. A sensor array can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-977

phased.STAPSMIBeamformer

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) of the received signal
in hertz as a scalar.

Default: 1

DirectionSource

Source of targeting direction

Specify whether the targeting direction for the STAP processor
comes from the Direction property of this object or from an
input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the
targeting direction.

'Input port' An input argument in each invocation of step specifies
the targeting direction.

Default: 'Property'

Direction

Targeting direction

1-978

phased.STAPSMIBeamformer

Specify the targeting direction of the SMI processor as a column
vector of length 2. The direction is specified in the format of
[AzimuthAngle; ElevationAngle] (in degrees). Azimuth angle
should be between –180 and 180. Elevation angle should be
between –90 and 90. This property applies when you set the
DirectionSource property to 'Property'.

Default: [0; 0]

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor
comes from the Doppler property of this object or from an input
argument in step. Values of this property are:

'Property' The Doppler property of this object specifies the
Doppler.

'Input port' An input argument in each invocation of step specifies
the Doppler.

Default: 'Property'

Doppler

Targeting Doppler frequency

Specify the targeting Doppler of the STAP processor as a scalar.
This property applies when you set the DopplerSource property
to 'Property'.

Default: 0

WeightsOutputPort

Output processing weights

1-979

phased.STAPSMIBeamformer

To obtain the weights used in the STAP processor, set this
property to true and use the corresponding output argument
when invoking step. If you do not want to obtain the weights, set
this property to false.

Default: false

NumGuardCells

Number of guarding cells

Specify the number of guard cells used in the training as an even
integer. This property specifies the total number of cells on both
sides of the cell under test.

Default: 2, indicating that there is one guard cell at both the
front and back of the cell under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in the training as an
even integer. Whenever possible, the training cells are equally
divided before and after the cell under test.

Default: 2, indicating that there is one training cell at both the
front and back of the cell under test

Methods clone Create space-time adaptive SMI
beamformer object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

1-980

phased.STAPSMIBeamformer

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform SMI STAP processing on
input data

Examples Process the data cube using an SMI processor. The weights are
calculated for the 71st cell of a collected data cube pointing to the
direction of [45; –35] degrees and the Doppler of 12980 Hz.

load STAPExampleData; % load data
Hs = phased.STAPSMIBeamformer('SensorArray',STAPEx_HArray,...

'PRF',STAPEx_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'NumTrainingCells',100,...
'WeightsOutputPort',true,...
'DirectionSource','Input port',...
'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[45; -35],12980);
Hresp = phased.AngleDopplerResponse(...

'SensorArray',Hs.SensorArray,...
'OperatingFrequency',Hs.OperatingFrequency,...
'PRF',Hs.PRF,...
'PropagationSpeed',Hs.PropagationSpeed);

plotResponse(Hresp,w);

1-981

phased.STAPSMIBeamformer

Algorithms The optimum beamformer weights are

w kR v 1

1-982

phased.STAPSMIBeamformer

where:

• k is a scalar

• R represents the space-time covariance matrix

• v indicates the space-time steering vector

Because the space-time covariance matrix is unknown, you must
estimate that matrix from the data. The sample matrix inversion (SMI)
algorithm estimates the covariance matrix by designating a number of
range gates to be training cells. Because you use the training cells to
estimate the interference covariance, these cells should not contain
target returns. To prevent target returns from contaminating the
estimate of the interference covariance, you can specify insertion of a
number of guard cells before and after the designated target cell.

To use the general algorithm for estimating the space-time covariance
matrix:

1 Assume you have a M-by-N-by-K matrix. M represents the number
of slow-time samples, and N is the number of array sensors. K is
the number of training cells (range gates for training). Also assume
that the number of training cells is an even integer and that you can
designate K/2 training cells before and after the target range gate
excluding the guard cells. Reshape the M-by-N-by-K matrix into a
MN-by-K matrix by letting X denote the MN-by-K matrix.

2 Estimate the space-time covariance matrix as

1
K

XX H

3 Invert the space-time covariance matrix estimate.

4 Obtain the beamforming weights by multiplying the sample
space-time covariance matrix inverse by the space-time steering
vector.

1-983

phased.STAPSMIBeamformer

References [1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also phased.ADPCACanceller | phased.AngleDopplerResponse |
phased.DPCACanceller | uv2azel | phitheta2azel

1-984

phased.STAPSMIBeamformer.clone

Purpose Create space-time adaptive SMI beamformer object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-985

phased.STAPSMIBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-986

phased.STAPSMIBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-987

phased.STAPSMIBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
STAPSMIBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-988

phased.STAPSMIBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-989

phased.STAPSMIBeamformer.step

Purpose Perform SMI STAP processing on input data

Syntax Y = step(H,X,CUTIDX)
Y = step(H,X,CUTIDX,ANG)
Y = step(H,X,CUTIDX,DOP)
[Y,W] = step(___)

Description Y = step(H,X,CUTIDX) applies SMI processing to the input data, X. X
must be a 3-dimensional M-by-N-by-P numeric array whose dimensions
are (range, channels, pulses). The processing weights are calculated
according to the range cell specified by CUTIDX. The targeting direction
and the targeting Doppler are specified by Direction and Doppler
properties, respectively. Y is a column vector of length M. This syntax is
available when the DirectionSource property is 'Property' and the
DopplerSource property is 'Property'.

Y = step(H,X,CUTIDX,ANG) uses ANG as the targeting direction. This
syntax is available when the DirectionSource property is 'Input
port'. ANG must be a 2-by-1 vector in the form of [AzimuthAngle;
ElevationAngle] (in degrees). The azimuth angle must be between
–180 and 180. The elevation angle must be between –90 and 90.

Y = step(H,X,CUTIDX,DOP) uses DOP as the targeting Doppler
frequency (in hertz). This syntax is available when the DopplerSource
property is 'Input port'. DOP must be a scalar.

You can combine optional input arguments when their enabling
properties are set: Y = step(H,X,CUTIDX,ANG,DOP)

[Y,W] = step(___) returns the additional output, W, as the processing
weights. This syntax is available when the WeightsOutputPort
property is true. W is a column vector of length N*P.

1-990

phased.STAPSMIBeamformer.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Process the data cube using an SMI processor. The weights are
calculated for the 71st cell of a collected data cube pointing to the
direction of [45; –35] degrees and the Doppler of 12980 Hz.

load STAPExampleData; % load data
Hs = phased.STAPSMIBeamformer('SensorArray',STAPEx_HArray,...

'PRF',STAPEx_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'NumTrainingCells',100,...
'WeightsOutputPort',true,...
'DirectionSource','Input port',...
'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[45; -35],12980);

See Also uv2azel | phitheta2azel

1-991

phased.ShortDipoleAntennaElement

Purpose Short-dipole antenna element

Description The phased.ShortDipoleAntennaElement object models a short-dipole
antenna element. A short-dipole antenna is a center-fed length wire
whose length is much shorter than a wavelength. This antenna object
only supports polarized fields.

To compute the response of the antenna element for specified directions:

1 Define and set up your short-dipole antenna element. See
“Construction” on page 1-992 .

2 Call step to compute the antenna response according to the
properties of phased.ShortDipoleAntennaElement. The behavior of
step is specific to each object in the toolbox.

Construction h = phased.ShortDipoleAntennaElement creates the system object, h,
to model a short-dipole antenna element.

h = phased.ShortDipoleAntennaElement(Name,Value) creates the
system object, h, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN).

Properties FrequencyRange

Antenna operating frequency range

Antenna operating frequency range specified as a 1-by-2 row
vector in the form of [LowerBound HigherBound]. This vector
defines the frequency range over which the antenna has a
response. The antenna element has no response outside the
specified frequency range.

Default: [0 1e20]

AxisDirection

Dipole axis direction

1-992

phased.ShortDipoleAntennaElement

Dipole axis direction specified as one of 'Y' or 'Z'. This axis
defines the direction of the dipole current with respect to the
local coordinate system. In this coordinate system, the x-axis
corresponds to the boresight direction. Two dipole axis directions
are allowed: 'Y' specifies a horizontal dipole and 'Z' specifies a
vertical dipole in the local coordinate system.

Default: 'Z'

Methods clone Create short-dipole antenna
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotResponse Plot response pattern of antenna

release Allow property value and input
characteristics changes

step Output response of antenna
element

Examples Short-dipole Antenna Aligned Along the Y-Axis

Specify a short-dipole antenna with its dipole oriented along the y-axis.
Then, plot the 3-D responses for both the horizontal and vertical
polarizations.

h1 = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6,600e6],'AxisDirection','Y');

fc = 250e6;

1-993

phased.ShortDipoleAntennaElement

figure;
plotResponse(h1,fc,'Format','Polar',...

'RespCut','3D','Polarization','H');
figure;
plotResponse(h1,fc,'Format','Polar',...

'RespCut','3D','Polarization','V');
figure;
plotResponse(h1,fc,'Format','Polar',...

'RespCut','3D','Polarization','C');

This figure shows the horizontal polarization response.

1-994

phased.ShortDipoleAntennaElement

This figure shows the vertical polarization response.

1-995

phased.ShortDipoleAntennaElement

This combined response best illustrates the polarity of the short-dipole.

1-996

phased.ShortDipoleAntennaElement

Algorithms The total response of a short-dipole antenna element is a combination
of its frequency response and spatial response. This System object

1-997

phased.ShortDipoleAntennaElement

calculates both responses using nearest neighbor interpolation and then
multiplies the responses to form the total response.

References
[1] Mott, H., Antennas for Radar and Communications, John Wiley &
Sons, 1992.

See Also phased.CosineAntennaElement |
phased.CrossedDipoleAntennaElement |
phased.CustomAntennaElement | phased.IsotropicAntennaElement
| phased.ULA | phased.URA | phased.ConformalArray | uv2azelpat
| phitheta2azelpat | uv2azel | phitheta2azel

1-998

phased.ShortDipoleAntennaElement.clone

Purpose Create short-dipole antenna object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-999

phased.ShortDipoleAntennaElement.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1000

phased.ShortDipoleAntennaElement.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1001

phased.ShortDipoleAntennaElement.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
phased.ShortDipoleAntennaElement System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1002

phased.ShortDipoleAntennaElement.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value,
flag, indicating whether the phased.ShortDipoleAntennaElement
antenna element supports polarization or not. An antenna element
supports polarization if it can create or respond to polarized fields.
The phased.ShortDipoleAntennaElement object always supports
polarization.

Input
Arguments

h - Short-dipole antenna element

Short-dipole antenna element specified as a
phased.ShortDipoleAntennaElement System object.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability returned as a Boolean value true if the
antenna element supports polarization or false if it does not.
Because the short-dipole antenna element supports polarization,
the returned value is always true.

Examples Short-Dipole Antenna Supports Polarization

Determine whether a phased.ShortDipoleAntennaElement antenna
element supports polarization.

h = phased.ShortDipoleAntennaElement;
isPolarizationCapable(h)

ans =

1

The returned value true (1) shows that this antenna element supports
polarization.

1-1003

phased.ShortDipoleAntennaElement.plotResponse

Purpose Plot response pattern of antenna

Syntax plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ) plots the element response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency
is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K
row vector. FREQ must lie within the range specified by the
FrequencyVector property of H. If you set the 'RespCut' property
of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same
axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

1-1004

phased.ShortDipoleAntennaElement.plotResponse

Cut angle specified as a scalar. This argument is applicable only
when RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle
must be between –90 and 90. If RespCut is 'El', CutAngle must
be between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

’Polarization’

1-1005

phased.ShortDipoleAntennaElement.plotResponse

Specify the polarization options for plotting the antenna response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

1-1006

phased.ShortDipoleAntennaElement.plotResponse

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’AzimuthAngles’

Azimuth angles for plotting element response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting element response, specified as a row
vector. The ElevationAngles parameter sets the display range
and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When you set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

1-1007

phased.ShortDipoleAntennaElement.plotResponse

Default: [-90:90]

’UGrid’

U coordinate values for plotting element response, specified as
a row vector. The UGrid parameter sets the display range and
resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting element response, specified
as a row vector. The VGrid parameter sets the display range
and resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set the VGrid
and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples Response of Short-Dipole Antenna Oriented Along the Z-Axis

Specify a short-dipole antenna element with its dipole axis pointing
along the z-axis. To do so, set the 'AxisDirection' value to 'Z'.

sSD = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100 900]*1e6,'AxisDirection','Z');

Plot the antenna’s vertical polarization response at 200 MHz as a 3-D
polar plot.

1-1008

phased.ShortDipoleAntennaElement.plotResponse

fc = 200e6;
plotResponse(sSD,fc,'Format','Polar',...

'RespCut','3D','Polarization','V');

As the above figure shows, the antenna pattern is that of a
vertically-oriented dipole and has its maximum at the equator and nulls
at the poles.

1-1009

phased.ShortDipoleAntennaElement.plotResponse

Plot Short-Dipole Antenna Element Response Over Selected
Range

This example shows how to construct a short-dipole antenna element
with its dipole axis pointing along the z-axis and how to plot the
response over a selected range of angles. The antenna operating
frequency spans the range 100 to 900 MHz.

To construct a z-directed short-dipole antenna, set the 'AxisDirection'
value to 'Z'.

sSD = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100 900]*1e6,'AxisDirection','Z');

Plot the antenna’s vertical polarization response at 200 MHz as an
elevation cut at a fixed azimuth angle. Use the ’ElevationAngles’
property to restrict the plot from -60 to 60 degrees elevation in 0.1
degree increments.

plotResponse(sSD,200e6,'Format','Polar',...
'RespCut','El','Polarization','V',...
'ElevationAngles',[-60:0.1:60],'Unit','mag');

1-1010

phased.ShortDipoleAntennaElement.plotResponse

Plot Short-Dipole Antenna Element Directivity

This example shows how to construct a short-dipole antenna element
with its dipole axis pointing along the y-axis and how to plot the
directivity. The antenna operating frequency spans the range 100 to
900 MHz.

To construct a y-directed short-dipole antenna, set the 'AxisDirection'
value to 'Y'.

1-1011

phased.ShortDipoleAntennaElement.plotResponse

sSD = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100 900]*1e6,'AxisDirection','Y');

Plot the antenna’s directivity at 500 MHz as an elevation cut at a fixed
azimuth angle.

plotResponse(sSD,500e6,'Format','Line',...
'RespCut','El','Unit','dbi');

1-1012

phased.ShortDipoleAntennaElement.plotResponse

See Also uv2azel | azel2uv

1-1013

phased.ShortDipoleAntennaElement.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1014

phased.ShortDipoleAntennaElement.step

Purpose Output response of antenna element

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the antenna’s voltage response,
RESP, at the operating frequencies specified in FREQ and in the
directions specified in ANG. For the short-dipole antenna element object,
RESP is a MATLAB struct containing two fields, RESP.H and RESP.V,
representing the horizontal and vertical polarization components of
the antenna’s response. Each field is an M-by-L matrix containing
the antenna response at the M angles specified in ANG and at the L
frequencies specified in FREQ.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector
of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle

1-1015

phased.ShortDipoleAntennaElement.step

must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

Output
Arguments

RESP

Voltage response of antenna element returned as a MATLAB
struct with fields RESP.H and RESP.V. Both RESP.H and RESP.V
contain responses for the horizontal and vertical polarization
components of the antenna radiation pattern. Both RESP.H and
RESP.V areM-by-L matrices. In these matrices,M represents the
number of angles specified in ANG, and L represents the number
of frequencies specified in FREQ.

Examples Find the response of a short-dipole antenna element at the boresight
angle, [0;0], and at off-boresight, [30;0]. The antenna operates
between 100 and 900 MHz. Compute the response of the antenna at
these angles.

hsd = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100 900]*1e6,'AxisDirection','Y');

ang = [0 30;0 0];
fc = 250e6;
resp = step(hsd,fc,ang);

resp =

H: [2x1 double]
V: [2x1 double]

Algorithms The total response of a short-dipole antenna element is a combination
of its frequency response and spatial response. This System object
calculates both responses using nearest neighbor interpolation and then
multiplies the responses to form the total response.

1-1016

phased.ShortDipoleAntennaElement.step

See Also uv2azel | phitheta2azel

1-1017

phased.SteeringVector

Purpose Sensor array steering vector

Description The SteeringVector object calculates the steering vector for a sensor
array.

To compute the steering vector of the array for specified directions:

1 Define and set up your steering vector calculator. See “Construction”
on page 1-1018.

2 Call step to compute the steering vector according to the properties
of phased.SteeringVector. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.SteeringVector creates a steering vector System object,
H. The object calculates the steering vector of the given sensor array
for the specified directions.

H = phased.SteeringVector(Name,Value) creates a steering vector
object, H, with each specified property Name set to the specified Value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array used to calculate steering vector

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-1018

phased.SteeringVector

Default: Speed of light

IncludeElementResponse

Include individual element response in the steering vector

If this property is true, the steering vector includes the individual
element responses.

If this property is false, the computation of the steering vector
assumes the elements are isotropic. The steering vector does not
include the individual element responses. Furthermore, if the
SensorArray property contains subarrays, the steering vector is
the array factor among the subarrays. If SensorArray does not
contain subarrays, the steering vector is the array factor among
the array elements.

Default: false

EnablePolarization

Enable polarization simulation

Set to this property to true, to enable the steering vector to
simulate polarization. Set this property to false to ignore
polarization. This property applies only when the array specified
in the SensorArray property is capable of simulating polarization
and you have set the IncludeElementResponse property to true.

Default: false

Methods clone Create steering vector object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

1-1019

phased.SteeringVector

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Calculate steering vector

Examples Steering Vector for Uniform Linear Array

Calculate and display the steering vector for a 4-element uniform linear
array in the direction of 30 degrees azimuth and 20 degrees elevation.
Assume the array’s operating frequency is 300 MHz.

hULA = phased.ULA('NumElements',4);
hsv = phased.SteeringVector('SensorArray',hULA);
Fc = 3e8;
ANG = [30; 20];
sv = step(hsv,Fc,ANG)

sv =

-0.6011 - 0.7992i
0.7394 - 0.6732i
0.7394 + 0.6732i

-0.6011 + 0.7992i

Beam Pattern With and Without Steering

Calculate the steering vector for a 4-element uniform linear array in
the direction of 30 degrees azimuth and 20 degrees elevation. Assume
the array’s operating frequency is 300 MHz.

fc = 3e8;
ha = phased.ULA('NumElements',4);
hsv = phased.SteeringVector('SensorArray',ha);

1-1020

phased.SteeringVector

sv = step(hsv,fc,[30; 20]);

Plot the beam patterns for the uniform linear array when no steering
vector is applied (steered broadside) and when a steering vector is
applied.

c = hsv.PropagationSpeed;
subplot(211)
plotResponse(ha,fc,c,'RespCut','Az');
title('Without steering');
subplot(212)
plotResponse(ha,fc,c,'RespCut','Az','Weights',sv);
title('With steering');

1-1021

phased.SteeringVector

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ArrayGain | phased.ArrayResponse | phased.ElementDelay

1-1022

phased.SteeringVector.clone

Purpose Create steering vector object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-1023

phased.SteeringVector.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1024

phased.SteeringVector.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1025

phased.SteeringVector.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
SteeringVector System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1026

phased.SteeringVector.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1027

phased.SteeringVector.step

Purpose Calculate steering vector

Syntax SV = step(H,FREQ,ANG)
SV = step(H,FREQ,ANG,STEERANGLE)

Description SV = step(H,FREQ,ANG) returns the steering vector SV of the array for
the directions specified in ANG. The operating frequencies are specified
in FREQ. The meaning of SV depends on the IncludeElementResponse
property of H, as follows:

• If IncludeElementResponse is true, SV includes the individual
element responses.

• If IncludeElementResponse is false, the computation assumes
the elements are isotropic and SV does not include the individual
element responses. Furthermore, if the SensorArray property of
H contains subarrays, SV is the array factor among the subarrays
and the phase center of each subarray is at its geometric center.
If SensorArray does not contain subarrays, SV is the array factor
among the elements.

SV = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as the
subarray steering angle. This syntax is available when you
configure H so that H.Sensor is an array that contains subarrays,
H.Sensor.SubarraySteering is either 'Phase' or 'Time', and
H.IncludeElementResponse is true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

1-1028

phased.SteeringVector.step

Input
Arguments

H

Steering vector object.

FREQ

Operating frequencies in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies
the direction in space in the form [azimuth; elevation]. The
azimuth angle must be between –180 and 180 degrees, and the
elevation angle must be between –90 and 90 degrees.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a
length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180
degrees, and the elevation angle must be between –90 and 90
degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In
this case, the elevation angle is assumed to be 0.

Output
Arguments

SV

Steering vector. The form of the steering vector depends upon
whether the EnablePolarization property is set to true or
false.

• If EnablePolarization is set to false, the steering vector,
SV, has the dimensions N-by-M-by-L. The first dimension,

1-1029

phased.SteeringVector.step

N, is the number of elements of the phased array or, if
H.SensorArray contains subarrays, the number of subarrays.
Each column of SV contains the steering vector of the array
for the corresponding direction specified in ANG. Each of the L
pages of SV contains the steering vectors of the array for the
corresponding frequency specified in FREQ.

If you set the H.IncludeElementResponse property to true,
the steering vector includes the individual element responses.
If you set the H.IncludeElementResponse property to false,
the elements are assumed to be isotropic. Then, the steering
vector does not include individual element responses.

• If EnablePolarization is set to true, SV is a MATLAB struct
containing two fields, SV.H and SV.V. These fields represent
the steering vector’s horizontal and vertical polarization
components. Each field has the dimensions N-by-M-by-L. The
first dimension, N, is the number of elements of the phased
array or, if H.SensorArray contains subarrays, the number of
subarrays. Each column of SV contains the steering vector of
the array for the corresponding direction specified in ANG. Each
of the L pages of SV contains the steering vectors of the array
for the corresponding frequency specified in FREQ.

If you set the EnablePolarization to false for an array
that supports polarization, then all polarization information
is discarded. The combined pattern from both H and V
polarizations is used at each element to compute the steering
vector.

Simulating polarization also requires that the sensor array
specified in the SensorArray property is capable of simulating
polarization, and the IncludeElementResponse property is
set to true.

1-1030

phased.SteeringVector.step

Examples Steering Vector for Uniform Linear Array

Calculate the steering vector for a uniform linear array at the direction
of 30 degrees azimuth and 20 degrees elevation. Assume the array’s
operating frequency is 300 MHz.

hULA = phased.ULA('NumElements',2);
hsv = phased.SteeringVector('SensorArray',hULA);
Fc = 3e8;
ANG = [30; 20];
sv = step(hsv,Fc,ANG);

See Also uv2azel | phitheta2azel

1-1031

phased.SteppedFMWaveform

Purpose Stepped FM pulse waveform

Description The SteppedFMWaveform object creates a stepped FM pulse waveform.

To obtain waveform samples:

1 Define and set up your stepped FM pulse waveform. See
“Construction” on page 1-1032.

2 Call step to generate the stepped FM pulse waveform samples
according to the properties of phased.SteppedFMWaveform. The
behavior of step is specific to each object in the toolbox.

Construction H = phased.SteppedFMWaveform creates a stepped FM pulse waveform
System object, H. The object generates samples of a linearly stepped
FM pulse waveform.

H = phased.SteppedFMWaveform(Name,Value) creates a stepped FM
pulse waveform object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The quantity
(SampleRate ./ PRF) is a scalar or vector that must contain only
integers. The default value of this property corresponds to 1 MHz.

Default: 1e6

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar.
The value must satisfy PulseWidth <= 1./PRF.

Default: 50e-6

1-1032

phased.SteppedFMWaveform

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (in hertz) as a scalar or a
row vector. The default value of this property corresponds to 10
kHz.

To implement a constant PRF, specify PRF as a positive scalar.
To implement a staggered PRF, specify PRF as a row vector with
positive elements. When PRF is a vector, the output pulses use
successive elements of the vector as the PRF. If the last element
of the vector is reached, the process continues cyclically with the
first element of the vector.

The value of this property must satisfy these constraints:

• PRF is less than or equal to (1/PulseWidth).

• (SampleRate ./ PRF) is a scalar or vector that contains only
integers.

Default: 1e4

FrequencyStep

Linear frequency step size

Specify the linear frequency step size (in hertz) as a positive
scalar. The default value of this property corresponds to 20 kHz.

Default: 2e4

NumSteps

Specify the number of frequency steps as a positive integer. When
NumSteps is 1, the stepped FM waveform reduces to a rectangular
waveform.

Default: 5

1-1033

phased.SteppedFMWaveform

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Pulses'
or 'Samples'. When you set the OutputFormat property to
'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the
NumPulses property.

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property.

Default: 'Pulses'

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method
as a positive integer. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as
a positive integer. This property applies only when you set the
OutputFormat property to 'Pulses'.

Default: 1

1-1034

phased.SteppedFMWaveform

Methods bandwidth Bandwidth of stepped FM pulse
waveform

clone Create stepped FM pulse
waveform object with same
property values

getMatchedFilter Matched filter coefficients for
waveform

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plot Plot stepped FM pulse waveform

release Allow property value and input
characteristics changes

reset Reset state of stepped FM pulse
waveform object

step Samples of stepped FM pulse
waveform

Definitions Stepped FM Waveform

In a stepped FM waveform, a group of pulses together sweep a certain
bandwidth. Each pulse in this group occupies a given center frequency
and these center frequencies are uniformly located within the total
bandwidth.

Examples Create a stepped frequency pulse waveform object, and plot the third
pulse.

hw = phased.SteppedFMWaveform('NumSteps',3,'FrequencyStep',2e4);

1-1035

phased.SteppedFMWaveform

plot(hw,'PulseIdx',3);

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also phased.LinearFMWaveform | phased.RectangularWaveform |
phased.PhaseCodedWaveform

1-1036

phased.SteppedFMWaveform

Related
Examples

• Waveform Analysis Using the Ambiguity Function

1-1037

../examples/waveform-analysis-using-the-ambiguity-function.html

phased.SteppedFMWaveform.bandwidth

Purpose Bandwidth of stepped FM pulse waveform

Syntax BW = bandwidth(H)

Description BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses for
the stepped FM pulse waveform H. If there are N frequency steps, the
bandwidth equals N times the value of the FrequencyStep property.
If there is no frequency stepping, the bandwidth equals the reciprocal
of the pulse width.

Input
Arguments

H

Stepped FM pulse waveform object.

Output
Arguments

BW

Bandwidth of the pulses, in hertz.

Examples Determine the bandwidth of a stepped FM waveform.

H = phased.SteppedFMWaveform;
bw = bandwidth(H)

1-1038

phased.SteppedFMWaveform.clone

Purpose Create stepped FM pulse waveform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-1039

phased.SteppedFMWaveform.getMatchedFilter

Purpose Matched filter coefficients for waveform

Syntax Coeff = getMatchedFilter(H)

Description Coeff = getMatchedFilter(H) returns the matched filter coefficients
for the stepped FM waveform object H. Coeff is a matrix whose
columns correspond to the different frequency pulses in the stepped
FM waveform.

Examples Get the matched filter coefficients for a stepped FM pulse waveform.

hw = phased.SteppedFMWaveform(...
'NumSteps',3,'FrequencyStep',2e4,...
'OutputFormat','Pulses','NumPulses',3);

coeff = getMatchedFilter(hw);

1-1040

phased.SteppedFMWaveform.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1041

phased.SteppedFMWaveform.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1042

phased.SteppedFMWaveform.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
SteppedFMWaveform System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1043

phased.SteppedFMWaveform.plot

Purpose Plot stepped FM pulse waveform

Syntax plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot(___)

Description plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options
specified by one or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line
style, or marker options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input
Arguments

Hwav

Waveform object. This variable must be a scalar that represents a
single waveform object.

LineSpec

String that specifies the same line color, style, or marker options
as are available in the MATLAB plot function. If you specify a
PlotType value of 'complex', then LineSpec applies to both the
real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’PlotType’

1-1044

phased.SteppedFMWaveform.plot

Specifies whether the function plots the real part, imaginary part,
or both parts of the waveform. Valid values are 'real', 'imag',
and 'complex'.

Default: 'real'

’PulseIdx’

Index of the pulse to plot. This value must be a scalar.

Default: 1

Output
Arguments

h

Handle to the line or lines in the figure. For a PlotType value of
'complex', h is a column vector. The first and second elements of
this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples Create and plot a stepped frequency pulse waveform.

hw = phased.SteppedFMWaveform;
plot(hw);

1-1045

phased.SteppedFMWaveform.plot

1-1046

phased.SteppedFMWaveform.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1047

phased.SteppedFMWaveform.reset

Purpose Reset state of stepped FM pulse waveform object

Syntax reset(H)

Description reset(H) resets the states of the SteppedFMWaveform object, H.
Afterward, if the PRF property is a vector, the next call to step uses
the first PRF value in the vector.

1-1048

phased.SteppedFMWaveform.step

Purpose Samples of stepped FM pulse waveform

Syntax Y = step(H)

Description Y = step(H) returns samples of the stepped FM pulses in a column
vector, Y. The output, Y, results from increasing the frequency of
the preceding output by an amount specified by the FrequencyStep
property. If the total frequency increase is larger than the value
specified by the SweepBandwidth property, the samples of a rectangular
pulse are returned.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Definitions Stepped FM Waveform

In a stepped FM waveform, a group of pulses together sweep a certain
bandwidth. Each pulse in this group occupies a given center frequency
and these center frequencies are uniformly located within the total
bandwidth.

Examples Create a stepped frequency pulse waveform object with a frequency step
of 20 kHz and three frequency steps.

hw = phased.SteppedFMWaveform(...
'NumSteps',3,'FrequencyStep',2e4,...
'OutputFormat','Pulses','NumPulses',1);

% Use the step method to obtain the pulses.
% Pulse 1
pulse1 = step(hw);

1-1049

phased.SteppedFMWaveform.step

% Pulse 2 incremented by the frequency step 20 kHz
pulse2 = step(hw);
% Pulse 3 incremented by the frequency step 20 kHz
pulse3 = step(hw);

1-1050

phased.StretchProcessor

Purpose Stretch processor for linear FM waveform

Description The StretchProcessor object performs stretch processing on data from
a linear FM waveform.

To perform stretch processing:

1 Define and set up your stretch processor. See “Construction” on page
1-1051.

2 Call step to perform stretch processing on input data according to
the properties of phased.StretchProcessor. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.StretchProcessor creates a stretch processor System
object, H. The object performs stretch processing on data from a linear
FM waveform.

H = phased.StretchProcessor(Name,Value) creates a stretch
processor object, H, with additional options specified by one or more
Name,Value pair arguments. Name is a property name, and Value is
the corresponding value. Name must appear inside single quotes ('').
You can specify several name-value pair arguments in any order as
Name1,Value1, ,NameN,ValueN.

Properties SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The quantity
(SampleRate ./ PRF) is a scalar or vector that must contain only
integers. The default value of this property corresponds to 1 MHz.

Default: 1e6

PulseWidth

Pulse width

1-1051

phased.StretchProcessor

Specify the length of each pulse (in seconds) as a positive scalar.
The value must satisfy PulseWidth <= 1./PRF.

Default: 50e-6

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (in hertz) as a scalar or a
row vector. The default value of this property corresponds to 10
kHz.

To implement a constant PRF, specify PRF as a positive scalar.
To implement a staggered PRF, specify PRF as a row vector with
positive elements. When PRF is a vector, the output pulses use
successive elements of the vector as the PRF. If the last element
of the vector is reached, the process continues cyclically with the
first element of the vector.

The value of this property must satisfy these constraints:

• PRF is less than or equal to (1/PulseWidth).

• (SampleRate ./ PRF) is a scalar or vector that contains only
integers.

Default: 1e4

SweepSlope

FM sweep slope

Specify the slope of the linear FM sweeping, in hertz per second,
as a scalar.

Default: 2e9

SweepInterval

Location of FM sweep interval

1-1052

phased.StretchProcessor

Specify the linear FM sweeping interval using the value
'Positive' or 'Symmetric'. If SweepInterval is 'Positive',
the waveform sweeps in the interval between 0 and B, where B is
the sweeping bandwidth. If SweepInterval is 'Symmetric', the
waveform sweeps in the interval between –B/2 and B/2.

Default: 'Positive'

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

ReferenceRange

Reference range of stretch processing

Specify the center of ranges of interest, in meters, as a positive
scalar. The reference range must be within the unambiguous
range of one pulse. This property is tunable.

Default: 5000

RangeSpan

Span of ranges of interest

Specify the length of the interval for ranges of interest, in meters,
as a positive scalar. The range span is centered at the range value
specified in the ReferenceRange property.

Default: 500

1-1053

phased.StretchProcessor

Methods clone Create stretch processor with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform stretch processing for
linear FM waveform

Examples Detection of Target Using Stretch Processing

Use stretch processing to locate a target at a range of 4950 m.

Simulate the signal.

hwav = phased.LinearFMWaveform;
x = step(hwav);
c = 3e8; r = 4950;
num_sample = r/(c/(2*hwav.SampleRate));
x = circshift(x,num_sample);

Perform stretch processing.

hs = getStretchProcessor(hwav,5000,200,c);
y = step(hs,x);

Plot the spectrum of the resulting signal.

[Pxx,F] = periodogram(y,[],2048,hs.SampleRate,'centered');
plot(F/1000,10*log10(Pxx)); grid;
xlabel('Frequency (kHz)');

1-1054

phased.StretchProcessor

ylabel('Power/Frequency (dB/Hz)');
title('Periodogram Power Spectrum Density Estimate');

Detect the range.

[~,rngidx] = findpeaks(pow2db(Pxx/max(Pxx)),...
'MinPeakHeight',-5);

rngfreq = F(rngidx);
re = stretchfreq2rng(rngfreq,hs.SweepSlope,...

1-1055

phased.StretchProcessor

hs.ReferenceRange,c);

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also phased.LinearFMWaveform | phased.MatchedFilter |
stretchfreq2rng

Related
Examples

• Range Estimation Using Stretch Processing

Concepts • “Stretch Processing”

1-1056

../examples/range-estimation-using-stretch-processing.html

phased.StretchProcessor.clone

Purpose Create stretch processor with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-1057

phased.StretchProcessor.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1058

phased.StretchProcessor.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1059

phased.StretchProcessor.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
StretchProcessor System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1060

phased.StretchProcessor.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1061

phased.StretchProcessor.step

Purpose Perform stretch processing for linear FM waveform

Syntax Y = step(H,X)

Description Y = step(H,X) applies stretch processing along the first dimension of
X. Each column of X represents one receiving pulse.

Input
Arguments

H

Stretch processor object.

X

Input signal. Each column represents one receiving pulse.

Output
Arguments

Y

Result of stretch processing. The dimensions of Y match the
dimensions of X.

Examples Detection of Target Using Stretch Processing

Use stretch processing to locate a target at a range of 4950 m.

Simulate the signal.

hwav = phased.LinearFMWaveform;
x = step(hwav);
c = 3e8; r = 4950;
num_sample = r/(c/(2*hwav.SampleRate));
x = circshift(x,num_sample);

Perform stretch processing.

hs = getStretchProcessor(hwav,5000,200,c);
y = step(hs,x);

Plot the spectrum of the resulting signal.

[Pxx,F] = periodogram(y,[],2048,hs.SampleRate,'centered');

1-1062

phased.StretchProcessor.step

plot(F/1000,10*log10(Pxx)); grid;
xlabel('Frequency (kHz)');
ylabel('Power/Frequency (dB/Hz)');
title('Periodogram Power Spectrum Density Estimate');

Detect the range.

[~,rngidx] = findpeaks(pow2db(Pxx/max(Pxx)),...
'MinPeakHeight',-5);

1-1063

phased.StretchProcessor.step

rngfreq = F(rngidx);
re = stretchfreq2rng(rngfreq,hs.SweepSlope,...

hs.ReferenceRange,c);

See Also stretchfreq2rng

Related
Examples

• Range Estimation Using Stretch Processing

Concepts • “Stretch Processing”

1-1064

../examples/range-estimation-using-stretch-processing.html

phased.SubbandPhaseShiftBeamformer

Purpose Subband phase shift beamformer

Description The SubbandPhaseShiftBeamformer object implements a subband
phase shift beamformer.

To compute the beamformed signal:

1 Define and set up your subband phase shift beamformer. See
“Construction” on page 1-1065.

2 Call step to perform the beamforming operation according to the
properties of phased.SubbandPhaseShiftBeamformer. The behavior
of step is specific to each object in the toolbox.

Construction H = phased.SubbandPhaseShiftBeamformer creates a subband phase
shift beamformer System object, H. The object performs subband phase
shift beamforming on the received signal.

H = phased.SubbandPhaseShiftBeamformer(Name,Value) creates a
subband phase shift beamformer object, H, with each specified property
Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Sensor array

Sensor array specified as an array System object belonging to the
phased package. A sensor array can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

1-1065

phased.SubbandPhaseShiftBeamformer

OperatingFrequency

System operating frequency

Specify the operating frequency of the beamformer in hertz as a
scalar. The default value of this property corresponds to 300 MHz.

Default: 3e8

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar.

Default: 1e6

NumSubbands

Number of subbands

Specify the number of subbands used in the subband processing
as a positive integer.

Default: 64

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction for the beamformer
comes from the Direction property of this object or from an
input argument in step. Values of this property are:

'Property' The Direction property of this object
specifies the beamforming direction.

'Input port' An input argument in each invocation
of step specifies the beamforming
direction.

1-1066

phased.SubbandPhaseShiftBeamformer

Default: 'Property'

Direction

Beamforming directions

Specify the beamforming directions of the beamformer as a
two-row matrix. Each column of the matrix has the form
[AzimuthAngle; ElevationAngle] (in degrees). Each azimuth angle
must be between –180 and 180 degrees, and each elevation angle
must be between –90 and 90 degrees. This property applies when
you set the DirectionSource property to 'Property'.

Default: [0; 0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

SubbandsOutputPort

Output subband center frequencies

To obtain the center frequencies of each subband, set this property
to true and use the corresponding output argument when
invoking step. If you do not want to obtain the center frequencies,
set this property to false.

Default: false

1-1067

phased.SubbandPhaseShiftBeamformer

Methods clone Create subband phase shift
beamformer object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Beamforming using subband
phase shifting

Examples Apply subband phase shift beamformer to an 11-element ULA. The
incident angle of the signal is 10 degrees in azimuth and 30 degrees
in elevation.

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.3);
ha.Element.FrequencyRange = [20 20000];
fs = 1e3; carrierFreq = 2e3; t = (0:1/fs:2)';
x = chirp(t,0,2,fs);
c = 1500; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,...
'ModulatedInput',true,'CarrierFrequency',carrierFreq);

incidentAngle = [10; 30];
x = step(hc,x,incidentAngle);
noise = 0.3*(randn(size(x)) + 1j*randn(size(x)));
rx = x+noise;

% Beamforming

1-1068

phased.SubbandPhaseShiftBeamformer

hbf = phased.SubbandPhaseShiftBeamformer('SensorArray',ha,...
'Direction',incidentAngle,...
'OperatingFrequency',carrierFreq,'PropagationSpeed',c,...
'SampleRate',fs,'SubbandsOutputPort',true,...
'WeightsOutputPort',true);

[y,w,subbandfreq] = step(hbf,rx);

% Plot signals
plot(t(1:300),real(rx(1:300,6)),'r:',t(1:300),real(y(1:300)));
xlabel('Time'); ylabel('Amplitude');
legend('Original','Beamformed');

% Plot response pattern for five bands
figure;
plotResponse(ha,subbandfreq(1:5).',c,'Weights',w(:,1:5));
legend('location','SouthEast')

1-1069

phased.SubbandPhaseShiftBeamformer

1-1070

phased.SubbandPhaseShiftBeamformer

Algorithms The subband phase shift beamformer separates the signal into several
subbands and applies narrowband phase shift beamforming to the
signal in each subband. The beamformed signals in all the subbands
are regrouped to form the output signal.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

1-1071

phased.SubbandPhaseShiftBeamformer

See Also phased.Collector | phased.PhaseShiftBeamformer |
phased.TimeDelayBeamformer | phased.WidebandCollector |
uv2azel | phitheta2azel

Related
Examples

• “Wideband Beamforming”

1-1072

phased.SubbandPhaseShiftBeamformer.clone

Purpose Create subband phase shift beamformer object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-1073

phased.SubbandPhaseShiftBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1074

phased.SubbandPhaseShiftBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1075

phased.SubbandPhaseShiftBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
SubbandPhaseShiftBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1076

phased.SubbandPhaseShiftBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1077

phased.SubbandPhaseShiftBeamformer.step

Purpose Beamforming using subband phase shifting

Syntax Y = step(H,X)
Y = step(H,X,ANG)
[Y,W] = step(___)
[Y,FREQ] = step(___)
[Y,W,FREQ] = step(___)

Description Y = step(H,X) performs subband phase shift beamforming on the
input, X, and returns the beamformed output in Y.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This
syntax is available when you set the DirectionSource property to
'Input port'.

[Y,W] = step(___) returns the beamforming weights, W. This syntax
is available when you set the WeightsOutputPort property to true.

[Y,FREQ] = step(___) returns the center frequencies of subbands,
FREQ. This syntax is available when you set the SubbandsOutputPort
property to true.

[Y,W,FREQ] = step(___) returns beamforming weights and center
frequencies of subbands. This syntax is available when you set the
WeightsOutputPort property to true and set the SubbandsOutputPort
property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

1-1078

phased.SubbandPhaseShiftBeamformer.step

Input
Arguments

H

Beamformer object.

X

Input signal, specified as an M-by-N matrix. If the sensor array
contains subarrays, N is the number of subarrays; otherwise, N is
the number of elements.

ANG

Beamforming directions, specified as a two-row matrix. Each
column has the form [AzimuthAngle; ElevationAngle], in degrees.
Each azimuth angle must be between –180 and 180 degrees, and
each elevation angle must be between –90 and 90 degrees.

Output
Arguments

Y

Beamformed output. Y is an M-by-L matrix, where M is the
number of rows of X and L is the number of beamforming
directions.

W

Beamforming weights. W has dimensions N-by-K-by-L. K is the
number of subbands in the NumSubbands property. L is the
number of beamforming directions. If the sensor array contains
subarrays, N is the number of subarrays; otherwise, N is the
number of elements. Each column of W specifies the narrowband
beamforming weights used in the corresponding subband for the
corresponding direction.

FREQ

Center frequencies of subbands. FREQ is a column vector of
length K, where K is the number of subbands in the NumSubbands
property.

Examples Apply subband phase shift beamformer to an 11-element ULA. The
incident angle of the signal is 10 degrees in azimuth and 30 degrees
in elevation.

1-1079

phased.SubbandPhaseShiftBeamformer.step

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.3);
ha.Element.FrequencyRange = [20 20000];
fs = 1e3; carrierFreq = 2e3; t = (0:1/fs:2)';
x = chirp(t,0,2,fs);
c = 1500; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,...
'ModulatedInput',true,'CarrierFrequency',carrierFreq);

incidentAngle = [10; 30];
x = step(hc,x,incidentAngle);
noise = 0.3*(randn(size(x)) + 1j*randn(size(x)));
rx = x+noise;

% Beamforming
hbf = phased.SubbandPhaseShiftBeamformer('SensorArray',ha,...

'Direction',incidentAngle,...
'OperatingFrequency',carrierFreq,'PropagationSpeed',c,...
'SampleRate',fs,'SubbandsOutputPort',true,...
'WeightsOutputPort',true);

[y,w,subbandfreq] = step(hbf,rx);

Algorithms The subband phase shift beamformer separates the signal into several
subbands and applies narrowband phase shift beamforming to the
signal in each subband. The beamformed signals in all the subbands
are regrouped to form the output signal.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | phitheta2azel

1-1080

phased.SumDifferenceMonopulseTracker

Purpose Sum and difference monopulse for ULA

Description The SumDifferenceMonopulseTracker object implements a sum and
difference monopulse algorithm on a uniform linear array.

To estimate the direction of arrival (DOA):

1 Define and set up your sum and difference monopulse DOA estimator.
See “Construction” on page 1-1081.

2 Call step to estimate the DOA according to the properties of
phased.SumDifferenceMonopulseTracker. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.SumDifferenceMonopulseTracker creates a tracker
System object, H. The object uses sum and difference monopulse
algorithms on a uniform linear array (ULA).

H = phased.SumDifferenceMonopulseTracker(Name,Value) creates a
ULA monopulse tracker object, H, with each specified property Name
set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

1-1081

phased.SumDifferenceMonopulseTracker

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

Methods clone Create ULA monopulse tracker
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform monopulse tracking
using ULA

Examples Determine the direction of a target at around 60 degrees broadside
angle of a ULA.

ha = phased.ULA('NumElements',4);
hstv = phased.SteeringVector('SensorArray',ha);
hmp = phased.SumDifferenceMonopulseTracker('SensorArray',ha);
x = step(hstv,hmp.OperatingFrequency,60.1).';
est_dir = step(hmp,x,60);

Algorithms The tracker uses a sum-and-difference monopulse algorithm to estimate
the direction. The tracker obtains the difference steering vector by
phase-reversing the latter half of the sum steering vector.

1-1082

phased.SumDifferenceMonopulseTracker

For further details, see [1].

References [1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D.
Thesis. Georgia Institute of Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House,
1980.

See Also phased.BeamscanEstimator |
phased.SumDifferenceMonopulseTracker2D

1-1083

phased.SumDifferenceMonopulseTracker.clone

Purpose Create ULA monopulse tracker object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-1084

phased.SumDifferenceMonopulseTracker.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1085

phased.SumDifferenceMonopulseTracker.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1086

phased.SumDifferenceMonopulseTracker.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
SumDifferenceMonopulseTracker System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1087

phased.SumDifferenceMonopulseTracker.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1088

phased.SumDifferenceMonopulseTracker.step

Purpose Perform monopulse tracking using ULA

Syntax ESTANG = step(H,X,STANG)

Description ESTANG = step(H,X,STANG) estimates the incoming direction ESTANG
of the input signal, X, based on an initial guess of the direction.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Tracker object of type phased.SumDifferenceMonopulseTracker.

X

Input signal, specified as a row vector whose number of columns
corresponds to number of channels.

STANG

Initial guess of the direction, specified as a scalar that represents
the broadside angle in degrees. A typical initial guess is the
current steering angle. The value of STANG is between –90 and
90. The angle is defined in the array’s local coordinate system.
For details regarding the local coordinate system of the ULA, type
phased.ULA.coordinateSystemInfo.

Output
Arguments

ESTANG

Estimate of incoming direction, returned as a scalar that
represents the broadside angle in degrees. The value is between

1-1089

phased.SumDifferenceMonopulseTracker.step

–90 and 90. The angle is defined in the array’s local coordinate
system.

Examples Determine the direction of a target at around 60 degrees broadside
angle of a ULA.

ha = phased.ULA('NumElements',4);
hstv = phased.SteeringVector('SensorArray',ha);
hmp = phased.SumDifferenceMonopulseTracker('SensorArray',ha);
x = step(hstv,hmp.OperatingFrequency,60.1).';
est_dir = step(hmp,x,60);

Algorithms The tracker uses a sum-and-difference monopulse algorithm to estimate
the direction. The tracker obtains the difference steering vector by
phase-reversing the latter half of the sum steering vector.

For further details, see [1].

References [1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D.
Thesis. Georgia Institute of Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House,
1980.

1-1090

phased.SumDifferenceMonopulseTracker2D

Purpose Sum and difference monopulse for URA

Description The SumDifferenceMonopulseTracker2D object implements a sum and
difference monopulse algorithm for a uniform rectangular array.

To estimate the direction of arrival (DOA):

1 Define and set up your sum and difference monopulse DOA estimator.
See “Construction” on page 1-1091.

2 Call step to estimate the DOA according to the properties of
phased.SumDifferenceMonopulseTracker2D. The behavior of step
is specific to each object in the toolbox.

Construction H = phased.SumDifferenceMonopulseTracker2D creates a tracker
System object, H. The object uses sum and difference monopulse
algorithms on a uniform rectangular array (URA).

H = phased.SumDifferenceMonopulseTracker2D(Name,Value)
creates a URA monopulse tracker object, H, with each specified property
Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.URA object.

Default: phased.URA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

1-1091

phased.SumDifferenceMonopulseTracker2D

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

Methods clone Create URA monopulse tracker
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform monopulse tracking
using URA

Examples Determine the direction of a target at around 60 degrees azimuth and
20 degrees elevation of a URA.

ha = phased.URA('Size',4);
hstv = phased.SteeringVector('SensorArray',ha);
hmp = phased.SumDifferenceMonopulseTracker2D('SensorArray',ha);
x = step(hstv,hmp.OperatingFrequency,[60.1; 19.5]).';
est_dir = step(hmp,x,[60; 20]);

Algorithms The tracker uses a sum-and-difference monopulse algorithm to estimate
the direction. The tracker obtains the difference steering vector by
phase-reversing the latter half of the sum steering vector.

1-1092

phased.SumDifferenceMonopulseTracker2D

For further details, see [1].

References [1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D.
Thesis. Georgia Institute of Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House,
1980.

See Also phased.BeamscanEstimator |
phased.SumDifferenceMonopulseTracker

1-1093

phased.SumDifferenceMonopulseTracker2D.clone

Purpose Create URA monopulse tracker object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-1094

phased.SumDifferenceMonopulseTracker2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1095

phased.SumDifferenceMonopulseTracker2D.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1096

phased.SumDifferenceMonopulseTracker2D.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
SumDifferenceMonopulseTracker2D System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1097

phased.SumDifferenceMonopulseTracker2D.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1098

phased.SumDifferenceMonopulseTracker2D.step

Purpose Perform monopulse tracking using URA

Syntax ESTANG = step(H,X,STANG)

Description ESTANG = step(H,X,STANG) estimates the incoming direction ESTANG
of the input signal, X, based on an initial guess of the direction.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Tracker object of type
phased.SumDifferenceMonopulseTracker2D.

X

Input signal, specified as a row vector whose number of columns
corresponds to number of channels.

STANG

Initial guess of the direction, specified as a 2-by-1 vector in the
form [AzimuthAngle; ElevationAngle] in degrees. A typical
initial guess is the current steering angle. Azimuth angles must
be between –180 and 180. Elevation angles must be between –90
and 90. Angles are measured in the local coordinate system of the
array. For details regarding the local coordinate system of the
URA, type phased.URA.coordinateSystemInfo.

1-1099

phased.SumDifferenceMonopulseTracker2D.step

Output
Arguments

ESTANG

Estimate of incoming direction, returned as a 2-by-1 vector in the
form [AzimuthAngle; ElevationAngle] in degrees. Azimuth
angles are between –180 and 180. Elevation angles are between
–90 and 90. Angles are measured in the local coordinate system of
the array.

Examples Determine the direction of a target at around 60 degrees azimuth and
20 degrees elevation of a URA.

ha = phased.URA('Size',4);
hstv = phased.SteeringVector('SensorArray',ha);
hmp = phased.SumDifferenceMonopulseTracker2D('SensorArray',ha);
x = step(hstv,hmp.OperatingFrequency,[60.1; 19.5]).';
est_dir = step(hmp,x,[60; 20]);

Algorithms The tracker uses a sum-and-difference monopulse algorithm to estimate
the direction. The tracker obtains the difference steering vector by
phase-reversing the latter half of the sum steering vector.

For further details, see [1].

References [1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D.
Thesis. Georgia Institute of Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House,
1980.

See Also uv2azel | phitheta2azel | azel2uv | azel2phitheta

1-1100

phased.TimeDelayBeamformer

Purpose Time delay beamformer

Description The TimeDelayBeamformer object implements a time delay beamformer.

To compute the beamformed signal:

1 Define and set up your time delay beamformer. See “Construction”
on page 1-1101.

2 Call step to perform the beamforming operation according to the
properties of phased.TimeDelayBeamformer. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.TimeDelayBeamformer creates a time delay beamformer
System object, H. The object performs delay and sum beamforming on
the received signal using time delays.

H = phased.TimeDelayBeamformer(Name,Value) creates a time delay
beamformer object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

1-1101

phased.TimeDelayBeamformer

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar.

Default: 1e6

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction comes from the
Direction property of this object or from an input argument in
step. Values of this property are:

'Property' The Direction property of this object
specifies the beamforming direction.

'Input port' An input argument in each invocation
of step specifies the beamforming
direction.

Default: 'Property'

Direction

Beamforming direction

Specify the beamforming direction of the beamformer as a column
vector of length 2. The direction is specified in the format of
[AzimuthAngle; ElevationAngle] (in degrees). The azimuth
angle should be between –180 and 180. The elevation angle
should be between –90 and 90. This property applies when you
set the DirectionSource property to 'Property'.

Default: [0; 0]

WeightsOutputPort

1-1102

phased.TimeDelayBeamformer

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

Methods clone Create time delay beamformer
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform time delay beamforming

Examples Apply a time delay beamformer to an 11-element array. The incident
angle of the signal is –50 degrees in azimuth and 30 degrees in elevation.

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
ha.Element.FrequencyRange = [20 20000];
fs = 8e3; t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,'ModulatedInput',false);
incidentAngle = [-50;30];
x = step(hc,x.',incidentAngle);

1-1103

phased.TimeDelayBeamformer

noise = 0.2*randn(size(x));
rx = x+noise;

% Beamforming
hbf = phased.TimeDelayBeamformer('SensorArray',ha,...

'SampleRate',fs,'PropagationSpeed',c,...
'Direction',incidentAngle);

y = step(hbf,rx);

% Plot
plot(t,rx(:,6),'r:',t,y);
xlabel('Time'); ylabel('Amplitude');
legend('Original','Beamformed');

1-1104

phased.TimeDelayBeamformer

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.FrostBeamformer | phased.PhaseShiftBeamformer
| phased.SubbandPhaseShiftBeamformer |
phased.TimeDelayLCMVBeamformer | uv2azel | phitheta2azel

1-1105

phased.TimeDelayBeamformer

Related
Examples

• “Wideband Beamforming”

1-1106

phased.TimeDelayBeamformer.clone

Purpose Create time delay beamformer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-1107

phased.TimeDelayBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1108

phased.TimeDelayBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1109

phased.TimeDelayBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
TimeDelayBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1110

phased.TimeDelayBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1111

phased.TimeDelayBeamformer.step

Purpose Perform time delay beamforming

Syntax Y = step(H,X)
Y = step(H,X,ANG)
[Y,W] = step(___)

Description Y = step(H,X) performs time delay beamforming on the input, X, and
returns the beamformed output in Y. X is an M-by-N matrix where N
is the number of elements of the sensor array. Y is a column vector
of length M.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This
syntax is available when you set the DirectionSource property
to'Input port'. ANG is a column vector of length 2 in the form of
[AzimuthAngle; ElevationAngle] (in degrees). The azimuth angle
must be between –180 and 180 degrees, and the elevation angle must
be between –90 and 90 degrees.

[Y,W] = step(___) returns additional output, W, as the beamforming
weights. This syntax is available when you set the WeightsOutputPort
property to true. W is a column vector of length N. For a time delay
beamformer, the weights are constant because the beamformer simply
adds all the channels together and scales the result to preserve the
signal power.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Apply a time delay beamformer to an 11-element array. The incident
angle of the signal is –50 degrees in azimuth and 30 degrees in elevation.

1-1112

phased.TimeDelayBeamformer.step

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
ha.Element.FrequencyRange = [20 20000];
fs = 8e3; t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,'ModulatedInput',false);
incidentAngle = [-50;30];
x = step(hc,x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x+noise;

% Beamforming
hbf = phased.TimeDelayBeamformer('SensorArray',ha,...

'SampleRate',fs,'PropagationSpeed',c,...
'Direction',incidentAngle);

y = step(hbf,rx);

See Also uv2azel | phitheta2azel

1-1113

phased.TimeDelayLCMVBeamformer

Purpose Time delay LCMV beamformer

Description The TimeDelayLCMVBeamformer object implements a time delay linear
constraint minimum variance beamformer.

The BeamscanEstimator object calculates a beamscan spatial spectrum
estimate for a uniform linear array.

To compute the beamformed signal:

1 Define and set up your time delay LCMV beamformer. See
“Construction” on page 1-1114.

2 Call step to perform the beamforming operation according to the
properties of phased.TimeDelayLCMVBeamformer. The behavior of
step is specific to each object in the toolbox.

Construction H = phased.TimeDelayLCMVBeamformer creates a time delay linear
constraint minimum variance (LCMV) beamformer System object, H.
The object performs time delay LCMV beamforming on the received
signal.

H = phased.TimeDelayLCMVBeamformer(Name,Value) creates a time
delay LCMV beamformer object, H, with each specified property Name
set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

1-1114

phased.TimeDelayLCMVBeamformer

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar.

Default: 1e6

FilterLength

FIR filter length

Specify the length of the FIR filter behind each sensor element in
the array as a positive integer.

Default: 2

Constraint

Constraint matrix

Specify the constraint matrix used for time delay LCMV
beamformer as an M-by-K matrix. Each column of the
matrix is a constraint and M is the degrees of freedom of the
beamformer. For a time delay LCMV beamformer, H, M is given
by H.SensorArray*H.FilterLength.

Default: [1; 1]

DesiredResponse

Desired response vector

Specify the desired response used for time delay LCMV
beamformer as a column vector of length K, where K is the
number of constraints in the Constraint property. Each element

1-1115

phased.TimeDelayLCMVBeamformer

in the vector defines the desired response of the constraint
specified in the corresponding column of the Constraint property.

Default: 1, which is equivalent to a distortionless response

DiagonalLoadingFactor

Diagonal loading factor

Specify the diagonal loading factor as a positive scalar. Diagonal
loading is a technique used to achieve robust beamforming
performance, especially when the sample support is small. This
property is tunable.

Default: 0

TrainingInputPort

Add input to specify training data

To specify additional training data, set this property to true and
use the corresponding input argument when you invoke step.
To use the input signal as the training data, set this property to
false.

Default: false

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction comes from the
Direction property of this object or from an input argument in
step. Values of this property are:

1-1116

phased.TimeDelayLCMVBeamformer

'Property' The Direction property of this object
specifies the beamforming direction.

'Input port' An input argument in each invocation
of step specifies the beamforming
direction.

Default: 'Property'

Direction

Beamforming direction

Specify the beamforming direction of the beamformer as a column
vector of length 2. The direction is specified in the format of
[AzimuthAngle; ElevationAngle] (in degrees). The azimuth
angle should be between –180 and 180. The elevation angle
should be between –90 and 90. This property applies when you
set the DirectionSource property to 'Property'.

Default: [0; 0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

1-1117

phased.TimeDelayLCMVBeamformer

Methods clone Create time delay LCMV
beamformer object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform time delay LCMV
beamforming

Examples Apply a time delay LCMV beamformer to an 11-element array. The
incident angle of the signal is –50 degrees in azimuth and 30 degrees
in elevation.

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
ha.Element.FrequencyRange = [20 20000];
fs = 8e3; t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,'ModulatedInput',false);
incidentAngle = [-50; 30];
x = step(hc,x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x+noise;

% Beamforming
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);

1-1118

phased.TimeDelayLCMVBeamformer

hbf = phased.TimeDelayLCMVBeamformer('SensorArray',ha,...
'PropagationSpeed',c,'SampleRate',fs,'FilterLength',5,...
'Direction',incidentAngle);

hbf.Constraint = kron(eye(5),ones(11,1));
hbf.DesiredResponse = eye(5, 1);
y = step(hbf,rx);

% Plot
plot(t,rx(:,6),'r:',t,y);
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed');

1-1119

phased.TimeDelayLCMVBeamformer

Algorithms The beamforming algorithm is the time-domain counterpart of the
narrowband linear constraint minimum variance (LCMV) beamformer.
The algorithm does the following:

1 Steers the array to the beamforming direction.

2 Applies an FIR filter to the output of each sensor to achieve the
specified constraints. The filter is specific to each sensor.

1-1120

phased.TimeDelayLCMVBeamformer

References [1] Frost, O. “An Algorithm For Linearly Constrained Adaptive Array
Processing”, Proceedings of the IEEE. Vol. 60, Number 8, August, 1972,
pp. 926–935.

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.FrostBeamformer | phased.PhaseShiftBeamformer
| phased.SubbandPhaseShiftBeamformer |
phased.TimeDelayBeamformer | uv2azel | phitheta2azel

Related
Examples

• “Wideband Beamforming”

1-1121

phased.TimeDelayLCMVBeamformer.clone

Purpose Create time delay LCMV beamformer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-1122

phased.TimeDelayLCMVBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1123

phased.TimeDelayLCMVBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1124

phased.TimeDelayLCMVBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
TimeDelayLCMVBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1125

phased.TimeDelayLCMVBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1126

phased.TimeDelayLCMVBeamformer.step

Purpose Perform time delay LCMV beamforming

Syntax Y = step(H,X)
Y = step(H,X,XT)
Y = step(H,X,ANG)
[Y,W] = step(___)

Description Y = step(H,X) performs time delay LCMV beamforming on the input,
X, and returns the beamformed output in Y. X is an M-by-N matrix
where N is the number of elements of the sensor array. Y is a column
vector of length M. M must be larger than the FIR filter length specified
in the FilterLength property.

Y = step(H,X,XT) uses XT as the training samples to calculate the
beamforming weights when you set the TrainingInputPort property to
true. XT is an M-by-N matrix where N is the number of elements of the
sensor array. M must be larger than the FIR filter length specified in
the FilterLength property.

Y = step(H,X,ANG) uses ANG as the beamforming direction, when you
set the DirectionSource property to 'Input port'. ANG is a column
vector of length 2 in the form of [AzimuthAngle; ElevationAngle] (in
degrees). The azimuth angle must be between –180 and 180 degrees,
and the elevation angle must be between –90 and 90 degrees.

You can combine optional input arguments when their enabling
properties are set: Y = step(H,X,XT,ANG)

[Y,W] = step(___) returns additional output, W, as the beamforming
weights when you set the WeightsOutputPort property to true. W is
a column vector of length L, where L is the degrees of freedom of the
beamformer. For a time delay LCMV beamformer, H, L is given by
H.SensorArray*H.FilterLength.

1-1127

phased.TimeDelayLCMVBeamformer.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Apply a time delay LCMV beamformer to an 11-element array. The
incident angle of the signal is –50 degrees in azimuth and 30 degrees
in elevation.

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
ha.Element.FrequencyRange = [20 20000];
fs = 8e3; t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,'ModulatedInput',false);
incidentAngle = [-50; 30];
x = step(hc,x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x+noise;

% Beamforming
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
hbf = phased.TimeDelayLCMVBeamformer('SensorArray',ha,...

'PropagationSpeed',c,'SampleRate',fs,'FilterLength',5,...
'Direction',incidentAngle);

hbf.Constraint = kron(eye(5),ones(11,1));
hbf.DesiredResponse = eye(5, 1);
y = step(hbf,rx);

1-1128

phased.TimeDelayLCMVBeamformer.step

Algorithms The beamforming algorithm is the time-domain counterpart of the
narrowband linear constraint minimum variance (LCMV) beamformer.
The algorithm does the following:

1 Steers the array to the beamforming direction.

2 Applies an FIR filter to the output of each sensor to achieve the
specified constraints. The filter is specific to each sensor.

See Also uv2azel | phitheta2azel

1-1129

phased.TimeVaryingGain

Purpose Time varying gain control

Description The TimeVaryingGain object applies a time varying gain to input
signals. Time varying gain (TVG) is sometimes called automatic gain
control (AGC).

To apply the time varying gain to the signal:

1 Define and set up your time varying gain controller. See
“Construction” on page 1-1130.

2 Call step to apply the time varying gain according to the properties
of phased.TimeVaryingGain. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.TimeVaryingGain creates a time varying gain control
System object, H. The object applies a time varying gain to the input
signal to compensate for the signal power loss due to the range.

H = phased.TimeVaryingGain(Name,Value) creates an object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties RangeLoss

Loss at each input sample range

Specify the loss (in decibels) due to the range for each sample
in the input signal as a vector.

Default: 0

ReferenceLoss

Loss at reference range

Specify the loss (in decibels) at a given reference range as a scalar.

Default: 0

1-1130

phased.TimeVaryingGain

Methods clone Create time varying gain object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Apply time varying gains to input
signal

Examples Apply time varying gain to a signal to compensate for signal power
loss due to range.

rngloss = 10:22; refloss = 16; % in dB
t = (1:length(rngloss))';
x = 1./db2mag(rngloss(:));
H = phased.TimeVaryingGain('RangeLoss',rngloss,...

'ReferenceLoss',refloss);
y = step(H,x);

% Plot signals
tref = find(rngloss==refloss);
stem([t t],[abs(x) abs(y)]);
hold on;
stem(tref,x(tref),'filled','r');
xlabel('Time (s)'); ylabel('Magnitude (V)');
grid on;
legend('Before time varying gain',...

'After time varying gain',...
'Reference range');

1-1131

phased.TimeVaryingGain

References [1] Edde, B. Radar: Principles, Technology, Applications. Englewood
Cliffs, NJ: Prentice Hall, 1993.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also phased.MatchedFilter | pulsint

1-1132

phased.TimeVaryingGain.clone

Purpose Create time varying gain object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-1133

phased.TimeVaryingGain.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1134

phased.TimeVaryingGain.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1135

phased.TimeVaryingGain.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
TimeVaryingGain System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1136

phased.TimeVaryingGain.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1137

phased.TimeVaryingGain.step

Purpose Apply time varying gains to input signal

Syntax Y = step(H,X)

Description Y = step(H,X) applies time varying gains to the input signal X. The
process equalizes power levels across all samples to match a given
reference range. The compensated signal is returned in Y. X can be a
column vector, a matrix, or a cube. The gain is applied to each column
in X independently. The number of rows in X must match the length
of the loss vector specified in the RangeLoss property. Y has the same
dimensionality as X.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Apply time varying gain to a signal to compensate for signal power
loss due to range.

rngloss = 10:22; refloss = 16; % in dB
t = (1:length(rngloss))';
x = 1./db2mag(rngloss(:));
H = phased.TimeVaryingGain('RangeLoss',rngloss,...

'ReferenceLoss',refloss);
y = step(H,x);

% Plot signals
tref = find(rngloss==refloss);
stem([t t],[abs(x) abs(y)]);
hold on;
stem(tref,x(tref),'filled','r');

1-1138

phased.TimeVaryingGain.step

xlabel('Time (s)'); ylabel('Magnitude (V)');
grid on;
legend('Before time varying gain',...

'After time varying gain',...
'Reference range');

1-1139

phased.Transmitter

Purpose Transmitter

Description The Transmitter object implements a waveform transmitter.

To compute the transmitted signal:

1 Define and set up your waveform transmitter. See “Construction”
on page 1-1140.

2 Call step to compute the transmitted signal according to the
properties of phased.Transmitter. The behavior of step is specific
to each object in the toolbox.

Construction H = phased.Transmitter creates a transmitter System object, H. This
object transmits the input waveform samples with specified peak power.

H = phased.Transmitter(Name,Value) creates a transmitter object,
H, with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties PeakPower

Peak power

Specify the transmit peak power (in watts) as a positive scalar.

Default: 5000

Gain

Transmit gain

Specify the transmit gain (in decibels) as a real scalar.

Default: 20

LossFactor

Loss factor

1-1140

phased.Transmitter

Specify the transmit loss factor (in decibels) as a nonnegative
scalar.

Default: 0

InUseOutputPort

Enable transmitter status output

To obtain the transmitter in-use status for each output sample, set
this property to true and use the corresponding output argument
when invoking step. In this case, 1’s indicate the transmitter is
on, and 0’s indicate the transmitter is off. If you do not want to
obtain the transmitter in-use status, set this property to false.

Default: false

CoherentOnTransmit

Preserve coherence among pulses

Specify whether to preserve coherence among transmitted pulses.
When you set this property to true, the transmitter does not
introduce any random phase to the output pulses. When you set
this property to false, the transmitter adds a random phase noise
to each transmitted pulse. The random phase noise is introduced
by multiplication of the pulse by ejϕwhere ϕ is a uniform random
variable on the interval [0,2π].

Default: true

PhaseNoiseOutputPort

Enable pulse phase noise output

To obtain the introduced transmitter random phase noise for each
output sample, set this property to true and use the corresponding
output argument when invoking step. You can use in the receiver
to simulate coherent on receive systems. If you do not want to
obtain the random phase noise, set this property to false. This

1-1141

phased.Transmitter

property applies when you set the CoherentOnTransmit property
to false.

Default: false

SeedSource

Source of seed for random number generator

'Auto' The default MATLAB random number
generator produces the random numbers.
Use 'Auto' if you are using this object
with Parallel Computing Toolbox software.

'Property' The object uses its own private random
number generator to produce random
numbers. The Seed property of this object
specifies the seed of the random number
generator. Use 'Property' if you want
repeatable results and are not using this
object with Parallel Computing Toolbox
software.

This property applies when you set the CoherentOnTransmit
property to false.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232–1. This property applies when you set
the CoherentOnTransmit property to false and the SeedSource
property to 'Property'.

Default: 0

1-1142

phased.Transmitter

Methods clone Create transmitter object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

reset Reset states of transmitter object

step Transmit pulses

Examples Transmit a pulse containing a linear FM waveform with a bandwidth of
5 MHz. The sample rate is 10 MHz and the pulse repetition frequency
is 10 kHz.

fs = 1e7;
hwav = phased.LinearFMWaveform('SampleRate',fs,...

'PulseWidth',1e-5,'SweepBandwidth',5e6);
x = step(hwav);
htx = phased.Transmitter('PeakPower',5e3);
y = step(htx,x);

References [1] Edde, B. Radar: Principles, Technology, Applications. Englewood
Cliffs, NJ: Prentice Hall, 1993.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[3] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

1-1143

phased.Transmitter

See Also phased.Radiator | phased.ReceiverPreamp

1-1144

phased.Transmitter.clone

Purpose Create transmitter object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-1145

phased.Transmitter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1146

phased.Transmitter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1147

phased.Transmitter.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the Transmitter
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1148

phased.Transmitter.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles,
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1149

phased.Transmitter.reset

Purpose Reset states of transmitter object

Syntax reset(H)

Description reset(H) resets the states of the Transmitter object, H. This method
resets the random number generator state if the SeedSource property
is applicable and has the value 'Property'.

1-1150

phased.Transmitter.step

Purpose Transmit pulses

Syntax Y = step(H,X)
[Y,STATUS] = step(H,X)
[Y,PHNOISE] = step(H,X)

Description Y = step(H,X) returns the transmitted signal Y, based on the input
waveform X. Y is the amplified X where the amplification is based on the
characteristics of the transmitter, such as the peak power and the gain.

[Y,STATUS] = step(H,X) returns additional output STATUS as the
on/off status of the transmitter when the InUseOutputPort property is
true. STATUS is a logical vector where true indicates the transmitter
is on for the corresponding sample time, and false indicates the
transmitter is off.

[Y,PHNOISE] = step(H,X) returns the additional output PHNOISE as
the random phase noise added to each transmitted sample when the
CoherentOnTransmit property is false and the PhaseNoiseOutputPort
property is true. PHNOISE is a vector which has the same dimension as
Y. Each element in PHNOISE contains the random phase between 0 and
2*pi, added to the corresponding sample in Y by the transmitter.

You can combine optional output arguments when their enabling
properties are set. Optional outputs must be listed in the same order as
the order of the enabling properties. For example:

[Y,STATUS,PHNOISE] = step(H,X)

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

1-1151

phased.Transmitter.step

Examples Transmit a pulse containing a linear FM waveform. The sample rate is
10 MHz and the pulse repetition frequency is 50 kHz. The transmitter
peak power is 5 kw.

fs = 1e7;
hwav = phased.LinearFMWaveform('SampleRate',fs,...

'PulseWidth',1e-5,'SweepBandwidth',5e6);
x = step(hwav);
htx = phased.Transmitter('PeakPower',5e3);
y = step(htx,x);

1-1152

phased.ULA

Purpose Uniform linear array

Description The ULA object creates a uniform linear array.

To compute the response for each element in the array for specified
directions:

1 Define and set up your uniform linear array. See “Construction”
on page 1-1153.

2 Call step to compute the response according to the properties of
phased.ULA. The behavior of step is specific to each object in the
toolbox.

Construction H = phased.ULA creates a uniform linear array (ULA) System object,
H. The object models a ULA formed with identical sensor elements.
The origin of the local coordinate system is the phase center of the
array. The positive x-axis is the direction normal to the array, and the
elements of the array are located along the y-axis.

H = phased.ULA(Name,Value) creates object, H, with each
specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.ULA(N,D,Name,Value) creates a ULA object, H, with the
NumElements property set to N, the ElementSpacing property set to
D, and other specified property Names set to the specified Values. N and
D are value-only arguments. To specify a value-only argument, you
must also specify all preceding value-only arguments. You can specify
name-value pair arguments in any order.

Properties Element

Element of array

Specify the element of the sensor array as a handle. The element
must be an element object in the phased package.

1-1153

phased.ULA

Default: An isotropic antenna element that operates between
300 MHz and 1 GHz

NumElements

Number of elements

An integer containing the number of elements in the array.

Default: 2

ElementSpacing

Element spacing

A scalar containing the spacing (in meters) between two adjacent
elements in the array.

Default: 0.5

Taper

Element tapering

Element tapering specified as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents
the number of elements of the array. Tapers, also known as
weights, are applied to each sensor elements in the sensor array
and modify both the amplitude and phase of the received data. If
'Taper' is a scalar, the same weights are applied to each element.
If 'Taper' is a vector, each weight is applied to the corresponding
sensor element.

Default: 1

Methods clone Create ULA object with same
property values

collectPlaneWave Simulate received plane waves

1-1154

phased.ULA

getElementPosition Positions of array elements

getNumElements Number of elements in array

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

getTaper Array element tapers

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotGratingLobeDiagram Plot grating lobe diagram of array

plotResponse Plot response pattern of array

release Allow property value and input
characteristics

step Output responses of array
elements

viewArray View array geometry

Examples Response of Antenna Array

Create a 4-element ULA and find the response of each element at
boresight. Plot the array response at 1 GHz for azimuth angles between
–180 and 180 degrees.

ha = phased.ULA('NumElements',4);
fc = 1e9;
ang = [0;0];
resp = step(ha,fc,ang);
c = physconst('LightSpeed');
plotResponse(ha,fc,c)

1-1155

phased.ULA

Response of Microphone Array

Find and plot the response of an array of 10 microphones. In this
example, the Element property matches the acoustic frequency range of
a microphone.

hmic = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 20e3]);

Nele = 10;
hula = phased.ULA('NumElements',Nele,...

1-1156

phased.ULA

'ElementSpacing',3e-3,...
'Element',hmic);

fc = 100;
ang = [0; 0];
resp = step(hula,fc,ang);
c = 340;
plotResponse(hula,fc,c,'RespCut','Az','Format','Polar');

1-1157

phased.ULA

Response of an Array of Polarized Short-Dipole Antennas

Build a uniform line array of 5 short-dipole sensor elements.
Because short dipoles support polarization, the array should as
well. Verify that it supports polarization by looking at the output of
isPolarizationCapable. Then, draw the array, showing the tapering.

Build the array and display its shape using the viewArray method.

h = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[100e6 1e9],'AxisDirection','Z');

ha = phased.ULA('NumElements',5,'Element',h,...
'Taper',[.5,.7,1,.7,.5]);

viewArray(ha,'ShowTaper',true,'ShowIndex','All')
isPolarizationCapable(ha)

ans =

1

1-1158

phased.ULA

Display the response.

fc = 150e6;
ang = [10];

1-1159

phased.ULA

resp = step(ha,fc,ang);

resp =

H: [5x2 double]
V: [5x2 double]

resp.V

-0.6124 -0.6124
-0.8573 -0.8573
-1.2247 -1.2247
-0.8573 -0.8573
-0.6124 -0.6124

Plot the vertical polarization response.

c = physconst('LightSpeed');
plotResponse(ha,fc,c,'RespCut','Az','Format',...

'Polar','Polarization','V');

1-1160

phased.ULA

References [1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

1-1161

phased.ULA

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ReplicatedSubarray |
phased.PartitionedArray | phased.ConformalArray |
phased.CosineAntennaElementphased.CrossedDipoleAntennaElement
| phased.CustomAntennaElement |
phased.IsotropicAntennaElementphased.ShortDipoleAntennaElement
| phased.URA

Related
Examples

• Phased Array Gallery

1-1162

../examples/phased-array-gallery.html

phased.ULA.clone

Purpose Create ULA object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-1163

phased.ULA.collectPlaneWave

Purpose Simulate received plane waves

Syntax Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description Y = collectPlaneWave(H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave(H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

Input
Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

1-1164

phased.ULA.collectPlaneWave

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output
Arguments

Y

Received signals. Y is an N-column matrix, where N is the number
of elements in the array H. Each column of Y is the received signal
at the corresponding array element, with all incoming signals
combined.

Examples Simulate the received signal at a 4-element ULA.

The signals arrive from 10 degrees and 30 degrees azimuth. Both
signals have an elevation angle of 0 degrees. Assume the propagation
speed is the speed of light and the carrier frequency of the signal is
100 MHz.

ha = phased.ULA(4);
y = collectPlaneWave(ha,randn(4,2),[10 30],1e8,...

physconst('LightSpeed'));

Algorithms collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. The
method does not account for the response of individual elements in
the array.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | phitheta2azel

1-1165

phased.ULA.getElementPosition

Purpose Positions of array elements

Syntax POS = getElementPosition(H)
POS = getElementPosition(H,ELEIDX)

Description POS = getElementPosition(H) returns the element positions of the
ULA System object, H . POS is a 3-by-N matrix, where N is the number
of elements in H. Each column of POS defines the position of an element
in the local coordinate system, in meters, using the form [x; y; z].
The origin of the local coordinate system is the phase center of the
array. The positive x-axis is the direction normal to the array, and the
elements of the array are located along the y-axis.

POS = getElementPosition(H,ELEIDX) returns only the positions of
the elements that are specified in the element index vector ELEIDX.
This syntax can use any of the input arguments in the previous syntax.

Examples Construct a default ULA, and obtain the element positions.

ha = phased.ULA;
pos = getElementPosition(ha)

1-1166

phased.ULA.getNumElements

Purpose Number of elements in array

Syntax N = getNumElements(H)

Description N = getNumElements(H) returns the number of elements, N, in the
ULA object H.

Examples Construct a default ULA, and obtain the number of elements in that
array.

ha = phased.ULA;
N = getNumElements(ha)

1-1167

phased.ULA.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1168

phased.ULA.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1169

phased.ULA.getTaper

Purpose Array element tapers

Syntax wts = getTaper(h)

Description wts = getTaper(h) returns the tapers, wts, applied to each element of
the phased uniform line array (ULA), h. Tapers are often referred to
as weights.

Input
Arguments

h - Uniform line array
phased.ULA System object

Uniform line array specified as a phased.ULA System object.

Output
Arguments

wts - Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1 complex-valued
vector, where N is the number of elements in the array.

Examples ULA with Taylor Window Taper

Construct a 5-element ULA with a Taylor window taper. Then, obtain
the element taper values.

taper = taylorwin(5)';
ha = phased.ULA(5,'Taper',taper);
w = getTaper(ha)

w =

0.5181
1.2029
1.5581
1.2029
0.5181

1-1170

phased.ULA.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the ULA System
object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1171

phased.ULA.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the array supports polarization. An array supports
polarization if all of its constituent sensor elements support polarization.

Input
Arguments

h - Uniform line array

Uniform line array specified as a phased.ULA System object.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if
the array supports polarization or false if it does not.

Examples ULA of Short-Dipole Antenna Elements Supports Polarization

Show that an array of phased.ShortDipoleAntennaElement antenna
elements supports polarization.

h = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[1e9 10e9]);

ha = phased.ULA('NumElements',3,'Element',h);
isPolarizationCapable(ha)

ans =

1

The returned value true (1) shows that this array supports
polarization.

1-1172

phased.ULA.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row
vector. Values must lie within the range specified by a property of
H. That property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has
no response at frequencies outside that range. If you set the
'RespCut' property of H to '3D', FREQ must be a scalar. When
FREQ is a row vector, plotResponse draws multiple frequency
responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding

1-1173

phased.ULA.plotResponse

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must
be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

1-1174

phased.ULA.plotResponse

Default: true

’Polarization’

Specify the polarization options for plotting the array response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

1-1175

phased.ULA.plotResponse

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’Weights’

Weight values applied to the array, specified as a length-N
column vector or N-by-M matrix. The dimension N is the number
of elements in the array. The interpretation of M depends upon
whether the input argument FREQ is a scalar or row vector.

Weights
Dimensions

FREQ Dimension Purpose

N-by-1 column
vector

Scalar or 1-by-M
row vector

Apply one set
of weights for
the same single
frequency or all M
frequencies.

Scalar Apply all of the M
different columns
in Weights for
the same single
frequency.

N-by-M matrix
1-by-M row vector Apply each of theM

different columns
in Weights for
the corresponding
frequency in FREQ.

’AzimuthAngles’

1-1176

phased.ULA.plotResponse

Azimuth angles for plotting array response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting array response, specified as a row
vector. The ElevationAngles parameter sets the display range
and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When yous set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

Default: [-90:90]

’UGrid’

U coordinate values for plotting array response, specified as a
row vector. The UGrid parameter sets the display range and
resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

1-1177

phased.ULA.plotResponse

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting array response, specified as a
row vector. The VGrid parameter sets the display range and
resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set VGrid and
UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples Line Plot Showing Multiple Frequencies

Plot the azimuth cut response of a uniform linear array along 0
elevation using a line plot. The plot shows the responses at operating
frequencies of 300 MHz and 400 MHz.

h = phased.ULA;
fc = [3e8 4e8];
c = physconst('LightSpeed');
plotResponse(h,fc,c)

1-1178

phased.ULA.plotResponse

Plot Azimuth Response of 4-Element ULA

Construct a 4-element ULA and plot its azimuth response in polar
format. Assume the operating frequency is 1 GHz and the wave
propagation speed is 3e8 m/s.

ha = phased.ULA(4);
fc = 1e9; c = 3e8;
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');

1-1179

phased.ULA.plotResponse

Azimuth Response of Weighted 11-Element ULA

Construct an 11–element ULA array of backbaffled omnidirectional
microphones for beamforming the direction of arrival of sound in air.
The elements are spaced four centimeters apart and have a frequency
response in the band 2000–8000 Hz. Then, use plotResponse to display
an azimuth cut of the array’s response at 5000 Hz. Apply both uniform
weights and Taylor window weights to the array at a single frequency
using the Weights parameter. Using the AzimuthAngles parameter,
limit the display to ±45° in 0.1° increments. A typical value for the
speed of sound in air is 343 m/s.

1-1180

phased.ULA.plotResponse

s_omni = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[2000,8000],...
'BackBaffled',true);

s_ula = phased.ULA(11,'Element',s_omni,...
'ElementSpacing',0.04);

c = 343.0;
fc = 5000;
wts = taylorwin(11);
plotResponse(s_ula,fc,c,'RespCut','Az',...

'Format','Polar',...
'Weights',[ones(11,1),wts],...
'AzimuthAngles',[-45:.1:45]);

1-1181

phased.ULA.plotResponse

The plot shows that the tapered set of weights reduces the adjacent
sidelobes while broadening the main lobe.

1-1182

phased.ULA.plotResponse

Plot Directivity of 11-Element ULA of Cosine-Pattern Antennas

Construct an 11-element ULA of cosine antenna elements spaced
one-half wavelength apart. Then, plot an azimuth cut of its directivity.
Assume the operating frequency is 1.5 GHz and the wave propagation
speed is the speed of light.

fc = 1.5e9;
c = physconst('Lightspeed');
lambda = c/fc;
sCos = phased.CosineAntennaElement('FrequencyRange',...

[1e9 2e9],'CosinePower',[2.5,3.5]);
sULA = phased.ULA(11,0.5*lambda,'Element',sCos);
plotResponse(sULA,fc,c,'RespCut','Az','Unit','dbi');

1-1183

phased.ULA.plotResponse

1-1184

phased.ULA.plotResponse

The directivity attains its maximum value, 18 dB, at 0° azimuth.

See Also uv2azel | azel2uv

1-1185

phased.ULA.plotGratingLobeDiagram

Purpose Plot grating lobe diagram of array

Syntax plotGratingLobeDiagram(H,FREQ)
plotGratingLobeDiagram(H,FREQ,ANGLE)
plotGratingLobeDiagram(H,FREQ,ANGLE,C)
plotGratingLobeDiagram(H,FREQ,ANGLE,C,F0)
hPlot = plotGratingLobeDiagram(___)

Description plotGratingLobeDiagram(H,FREQ) plots the grating lobe diagram of
an array in the u-v coordinate system. The System object H specifies
the array. The argument FREQ specifies the signal frequency and
phase-shifter frequency. The array, by default, is steered to 0° azimuth
and 0° elevation.

A grating lobe diagram displays the positions of the peaks of the
narrowband array pattern. The array pattern depends only upon the
geometry of the array and not upon the types of elements which make
up the array. Visible and nonvisible grating lobes are displayed as open
circles. Only grating lobe peaks near the location of the mainlobe are
shown. The mainlobe itself is displayed as a filled circle.

plotGratingLobeDiagram(H,FREQ,ANGLE), in addition, specifies the
array steering angle, ANGLE.

plotGratingLobeDiagram(H,FREQ,ANGLE,C), in addition, specifies
the propagation speed by C.

plotGratingLobeDiagram(H,FREQ,ANGLE,C,F0), in addition, specifies
an array phase-shifter frequency, F0, that differs from the signal
frequency, FREQ. This argument is useful when the signal no longer
satisfies the narrowband assumption and, allows you to estimate the
size of beam squint.

hPlot = plotGratingLobeDiagram(___) returns the handle to the
plot for any of the input syntax forms.

Input
Arguments

H

Antenna or microphone array, specified as a System object.

1-1186

phased.ULA.plotGratingLobeDiagram

FREQ

Signal frequency, specified as a scalar. Frequency units are hertz.
Values must lie within a range specified by the frequency property
of the array elements contained in H.Element. The frequency
property is named FrequencyRange or FrequencyVector,
depending on the element type.

ANGLE

Array steering angle, specified as either a 2-by-1 vector or a scalar.
If ANGLE is a vector, it takes the form [azimuth;elevation]. The
azimuth angle must lie in the range [-180 ,180]. The elevation
angle must lie in the range [-90 ,90]. All angle values are
specified in degrees. If the argument ANGLE is a scalar, it specifies
only the azimuth angle where the corresponding elevation angle
is 0°.

Default: [0;0]

C

Signal propagation speed, specified as a scalar. Units are meters
per second.

Default: Speed of light in vacuum

F0

Phase-shifter frequency of the array, specified as a scalar.
Frequency units are hertz When this argument is omitted, the
phase-shifter frequency is assumed to be the signal frequency,
FREQ.

Default: FREQ

1-1187

phased.ULA.plotGratingLobeDiagram

Examples Create Grating Lobe Diagram for ULA

Plot the grating lobe diagram for a 4-element uniform linear array
having element spacing less than one-half wavelength. Grating lobes
are plotted in u-v coordinates.

Assume the operating frequency of the array is 3 GHz and the spacing
between elements is 0.45 of the wavelength. All elements are isotropic
antenna elements. Steer the array in the direction 45 degrees in
azimuth and 0 degrees in elevation.

c = physconst('LightSpeed');
f = 3e9;
lambda = c/f;
sIso = phased.IsotropicAntennaElement;
sULA = phased.ULA('Element',sIso,'NumElements',4,...

'ElementSpacing',0.45*lambda);
plotGratingLobeDiagram(sULA,f,[45;0],c);

1-1188

phased.ULA.plotGratingLobeDiagram

The main lobe of the array is indicated by a filled black circle. The
grating lobes in the visible and nonvisible regions are indicated by
empty black circles. The visible region is defined by the direction cosine
limits between [-1,1] and is marked by the two vertical black lines.
Because the array spacing is less than one-half wavelength, there are
no grating lobes in the visible region of space. There are an infinite
number of grating lobes in the nonvisible regions, but only those in
the range [-3,3] are shown.

1-1189

phased.ULA.plotGratingLobeDiagram

The grating-lobe free region, shown in green, is the range of directions
of the main lobe for which there are no grating lobes in the visible
region. In this case, it coincides with the visible region.

The white area of the diagram indicates a region where no grating lobes
are possible.

Create Grating Lobe Diagram for Undersampled ULA

Plot the grating lobe diagram for a 4-element uniform linear array
having element spacing greater than one-half wavelength. Grating
lobes are plotted in u-v coordinates.

Assume the operating frequency of the array is 3 GHz and the spacing
between elements is 0.65 of a wavelength. All elements are isotropic
antenna elements. Steer the array in the direction 45 degrees in
azimuth and 0 degrees in elevation.

c = physconst('LightSpeed');
f = 3e9;
lambda = c/f;
sIso = phased.IsotropicAntennaElement;
sULA = phased.ULA('Element',sIso,'NumElements',4,'ElementSpacing',0.65*la
plotGratingLobeDiagram(sULA,f,[45;0],c);

1-1190

phased.ULA.plotGratingLobeDiagram

The main lobe of the array is indicated by a filled black circle. The
grating lobes in the visible and nonvisible regions are indicated by
empty black circles. The visible region, marked by the two black vertical
lines, corresponds to arrival angles between -90 and 90 degrees. The
visible region is defined by the direction cosine limits .
Because the array spacing is greater than one-half wavelength, there is
now a grating lobe in the visible region of space. There are an infinite
number of grating lobes in the nonvisible regions, but only those for
which are shown.

1-1191

phased.ULA.plotGratingLobeDiagram

The grating-lobe free region, shown in green, is the range of directions
of the main lobe for which there are no grating lobes in the visible
region. In this case, it lies inside the visible region.

Create Grating Lobe Diagram for ULA With Different
Phase-Shifter Frequency

Plot the grating lobe diagram for a 4-element uniform linear array
having element spacing greater than one-half wavelength. Apply a
phase-shifter frequency that differs from the signal frequency. Grating
lobes are plotted in u-v coordinates.

Assume the signal frequency is 3 GHz and the spacing between
elements is 0.65 . All elements are isotropic antenna elements.
The phase-shifter frequency is set to 3.5 GHz. Steer the array in the
direction azimuth, elevation.

c = physconst('LightSpeed');
f = 3e9;
f0 = 3.5e9;
lambda = c/f;
sIso = phased.IsotropicAntennaElement;
sULA = phased.ULA('Element',sIso,'NumElements',4,...

'ElementSpacing',0.65*lambda);
plotGratingLobeDiagram(sULA,f,[45;0],c,f0);

1-1192

phased.ULA.plotGratingLobeDiagram

As a result of adding the shifted frequency, the mainlobe shifts right
towards larger values. The beam no longer points toward the actual
source arrival angle.

The mainlobe of the array is indicated by a filled black circle. The
grating lobes in the visible and nonvisible regions are indicated by
empty black circles. The visible region, marked by the two black vertical
lines, corresponds to arrival angles between and . The visible
region is defined by the direction cosine limits . Because
the array spacing is greater than one-half wavelength, there is now a

1-1193

phased.ULA.plotGratingLobeDiagram

grating lobe in the visible region of space. There are an infinite number
of grating lobes in the nonvisible regions, but only those for which

are shown.

The grating-lobe free region, shown in green, is the range of directions
of the main lobe for which there are no grating lobes in the visible
region. In this case, it lies inside the visible region.

Concepts Grating Lobes

Spatial undersampling of a wavefield by an array gives rise to visible
grating lobes. If you think of the wavenumber, k, as analogous to
angular frequency, then you must sample the signal at spatial intervals
smaller than π/kmax (or λmin/2) in order to remove aliasing. The
appearance of visible grating lobes is also known as spatial aliasing.
The variable kmax is the largest wavenumber value present in the signal.

The directions of maximum spatial response of a ULA are determined
by the peaks of the array’s array pattern (alternatively called the
beam pattern or array factor). Peaks other than the mainlobe peak
are called grating lobes. For a ULA, the array pattern depends only
on the wavenumber component of the wavefield along the array axis
(the y-direction for the phased.ULA System object). The wavenumber
component is related to the look-direction of an arriving wavefield by
ky = –2π sin φ/λ. The angle φ is the broadside angle—the angle that
the look-direction makes with a plane perpendicular to the array. The
look-direction points away from the array to the wavefield source.

The array pattern possesses an infinite number of periodically-spaced
peaks that are equal in strength to the mainlobe peak. If you steer the
array to the φ0 direction, the array pattern for a ULA has its mainlobe
peak at the wavenumber value of ky0 = –2π sin φ0/λ. The array pattern
has strong grating lobe peaks at kym = ky0 + 2π m/d, for any integer
value m. Expressed in terms of direction cosines, the grating lobes occur
at um = u0 + mλ/d, where u0 = sin φ0. The direction cosine, u0, is the
cosine of the angle that the look-direction makes with the y-axis and is
equal to sin φ0 when expressed in terms of the look-direction.

1-1194

phased.ULA.plotGratingLobeDiagram

In order to correspond to a physical look-direction, um must satisfy, –1
≤ um ≤ 1. You can compute a physical look-direction angle φm from sin
φm = um as long as –1 ≤ um ≤ 1. The spacing of grating lobes depends
upon λ/d. When λ/d is small enough, multiple grating lobe peaks can
correspond to physical look-directions.

The presence or absence of visible grating lobes for the ULA is
summarized in this table.

Element Spacing Grating Lobes

λ/d ≥ 2 No visible grating lobes for any
mainlobe direction.

1 ≤ λ/d < 2 Visible grating lobes can exist
for some range of mainlobe
directions.

λ/d < 1 Visible grating lobes exist for
every mainlobe direction.

References
[1] Van Trees, H.L. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | azel2uv

1-1195

phased.ULA.release

Purpose Allow property value and input characteristics

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1196

phased.ULA.step

Purpose Output responses of array elements

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP
at operating frequencies specified in FREQ and directions specified in
ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Array object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector
of length L. Typical values are within the range specified by a
property of H.Element. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the
array. The element has zero response at frequencies outside that
range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle

1-1197

phased.ULA.step

must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

Output
Arguments

RESP

Voltage responses of the phased array. The output depends on
whether the array supports polarization or not.

• If the array is not capable of supporting polarization, the
voltage response, RESP, has the dimensions N-by-M-by-L. N
is the number of elements in the array. The dimension M is
the number of angles specified in ANG. L is the number of
frequencies specified in FREQ. For any element, the columns
of RESP contain the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage
response, RESP, is a MATLAB struct containing two fields,
RESP.H and RESP.V. The field, RESP.H, represents the array’s
horizontal polarization response, while RESP.V represents
the array’s vertical polarization response. Each field has the
dimensions N-by-M-by-L. N is the number of elements in the
array, and M is the number of angles specified in ANG. L is
the number of frequencies specified in FREQ. Each column of
RESP contains the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

1-1198

phased.ULA.step

Examples Response of Antenna Array

Create a 4-element ULA and find the response of each element at the
boresight. Plot the array response at 1 GHz for azimuth angles between
–180 and 180 degrees.

ha = phased.ULA('NumElements',4);
fc = 1e9;
ang = [0;0];
resp = step(ha,fc,ang);
c = physconst('LightSpeed');
plotResponse(ha,fc,c)

1-1199

phased.ULA.step

Response of Microphone Array

Find and plot the response of an array of 10 microphones. In this
example, the Element property matches the acoustic frequency range of
a microphone.

hmic = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 20e3]);

Nele = 10;
hula = phased.ULA('NumElements',Nele,...

1-1200

phased.ULA.step

'ElementSpacing',3e-3,...
'Element',hmic);

fc = 100;
ang = [0; 0];
resp = step(hula,fc,ang);
c = 340;
plotResponse(hula,fc,c,'RespCut','Az','Format','Polar');

See Also uv2azel | phitheta2azel

1-1201

phased.ULA.viewArray

Purpose View array geometry

Syntax viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray(___)

Description viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(___) returns the handle of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

Input
Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’ShowIndex’

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

’ShowNormals’

1-1202

phased.ULA.viewArray

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

’ShowTaper’

Set this value to true to specify whether to change the element
color brightness in proportion to the element taper magnitude.
When this value is set to false, all elements are drawn with the
same color.

Default: false

’Title’

String specifying the title of the plot.

Default: 'Array Geometry'

Output
Arguments

hPlot

Handle of array elements in figure window.

Examples Geometry and Indices of ULA Elements

Draw a 6-element ULA. Use the ShowIndex property to show the indices
for the first and third elements.

ha = phased.ULA(6);
viewArray(ha,'ShowIndex',[1 3]);

1-1203

phased.ULA.viewArray

See Also phased.ArrayResponse

Related
Examples

• Phased Array Gallery

1-1204

../examples/phased-array-gallery.html

phased.URA

Purpose Uniform rectangular array

Description The URA object constructs a uniform rectangular array (URA).

To compute the response for each element in the array for specified
directions:

1 Define and set up your uniform rectangular array. See “Construction”
on page 1-1205.

2 Call step to compute the response according to the properties of
phased.URA. The behavior of step is specific to each object in the
toolbox.

Construction H = phased.URA creates a uniform rectangular array System object, H.
The object models a URA formed with identical sensor elements. Array
elements are distributed in the yz-plane in a rectangular lattice. The
array look direction (boresight) is along the positive x-axis.

H = phased.URA(Name,Value) creates the object, H, with each
specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.URA(SZ,D,Name,Value) creates a URA object, H, with the
Size property set to SZ, the ElementSpacing property set to D and
other specified property Names set to the specified Values. SZ and D are
value-only arguments. To specify a value-only argument, you must also
specify all preceding value-only arguments. You can specify name-value
pair arguments in any order.

Properties Element

Phased array toolbox system object

Element specified as a Phased Array System Toolbox object. This
object can be an antenna or microphone element.

1-1205

phased.URA

Default: An isotropic antenna element that operates between
300 MHz and 1 GHz

Size

Size of array

A 1-by-2 integer vector or a single integer containing the size
of the array. If Size is a 1-by-2 vector, the vector has the form
[NumberOfRows, NumberOfColumns]. If Size is a scalar, the
array has the same number of elements in each row and column.
For a URA, array elements are indexed from top to bottom along
a column and continuing to the next columns from left to right.
In this illustration, a 'Size' value of [3,2] array has three rows
and two columns.

Size and Element Indexing Order
for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Default: [2 2]

1-1206

phased.URA

ElementSpacing

Element spacing

A 1-by-2 vector or a scalar containing the element
spacing of the array, expressed in meters. If
ElementSpacing is a 1-by-2 vector, it is in the form of
[SpacingBetweenRows,SpacingBetweenColumns]. See “Spacing
Between Columns” on page 1-1208 and “Spacing Between Rows”
on page 1-1209. If ElementSpacing is a scalar, both spacings are
the same.

Default: [0.5 0.5]

Lattice

Element lattice

Specify the element lattice as one of 'Rectangular' |
'Triangular'. When you set the Lattice property to
'Rectangular', all elements in the URA are aligned in both
row and column directions. When you set the Lattice property
to 'Triangular', the elements in even rows are shifted toward
the positive row axis direction by a distance of half the element
spacing along the row.

Default: 'Rectangular'

Taper

Element taper

Element taper specified as a scalar or M-by-N complex-valued
matrix. Tapers are applied to each element in the sensor
array. Tapers are often referred to as element weights. M is
the number of elements along the z-axis, and N is the number
of elements along y-axis. M and N correspond to the values of
[NumberofRows, NumberOfColumns] in the Size property. If
Taper is a scalar, identical weights are applied to each element.

1-1207

phased.URA

If the value of Taper is a matrix, a taper value is applied to the
corresponding element.

Default: 1

Methods clone Create URA object with same
property values

collectPlaneWave Simulate received plane waves

getElementPosition Positions of array elements

getNumElements Number of elements in array

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

getTaper Array element tapers

isLocked Locked status for input attributes
and nontunable properties

isPolarizationCapable Polarization capability

plotGratingLobeDiagram Plot grating lobe diagram of array

plotResponse Plot response pattern of array

release Allow property value and input
characteristics

step Output responses of array
elements

viewArray View array geometry

Definitions Spacing Between Columns

The spacing between columns is the distance between adjacent elements
in the same row.

1-1208

phased.URA

Spacing Between Rows

The spacing between rows is the distance along the column axis
direction between adjacent rows.

1-1209

phased.URA

Spacing Between
Rows

Sp

1-1210

phased.URA

Examples Azimuth Response of a 3-by-2 URA at Boresight

This example shows how to construct a 3-by-2 rectangular lattice URA.
Find the response of each element at boresight. Assume the operating
frequency is 1 GHz.

ha = phased.URA('Size',[3 2]);
fc = 1e9; ang = [0;0];
resp = step(ha,fc,ang);
disp(resp)

1
1
1
1
1
1

Plot the azimuth response of the array.

c = physconst('LightSpeed');
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');

1-1211

phased.URA

Compare Triangular and Rectangular Lattice URA’s

This example shows how to find and plot the positions of the elements
of a 5-row-by-6-column URA with a triangular lattice and a URA with a
rectangular lattice. The element spacing is 0.5 meters for both lattices.

Create the arrays.

h_tri = phased.URA('Size',[5 6],'Lattice','Triangular');
h_rec = phased.URA('Size',[5 6],'Lattice','Rectangular');

1-1212

phased.URA

Get the element y,z positions for each array. All the x coordinates are
zero.

pos_tri = getElementPosition(h_tri);
pos_rec = getElementPosition(h_rec);
pos_yz_tri = pos_tri(2:3,:);
pos_yz_rec = pos_rec(2:3,:);

Plot the element positions in the yz-plane.

figure;
set(gcf,'Position',[100 100 300 400])
subplot(2,1,1);
plot(pos_yz_tri(1,:), pos_yz_tri(2,:), '.')
axis([-1.5 1.5 -2 2])
xlabel('y'); ylabel('z')
title('Triangular Lattice')
subplot(2,1,2);
plot(pos_yz_rec(1,:), pos_yz_rec(2,:), '.')
axis([-1.5 1.5 -2 2])
xlabel('y'); ylabel('z')
title('Rectangular Lattice')

1-1213

phased.URA

1-1214

phased.URA

Adding Tapers to an Array

Construct a 5-by-2 element URA with a Taylor window taper along each
column. The tapers form a 5-by-2 matrix.

taper = taylorwin(5);
ha = phased.URA([5,2],'Taper',[taper,taper]);
w = getTaper(ha)

w =

0.5181
1.2029
1.5581
1.2029
0.5181
0.5181
1.2029
1.5581
1.2029
0.5181

References [1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

[2] Brookner, E., ed. Practical Phased Array Antenna Systems. Boston:
Artech House, 1991.

[3] Mailloux, R. J. “Phased Array Theory and Technology,” Proceedings
of the IEEE, Vol., 70, Number 3s, pp. 246–291.

[4] Mott, H. Antennas for Radar and Communications, A Polarimetric
Approach. New York: John Wiley & Sons, 1992.

[5] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

1-1215

phased.URA

See Also phased.ReplicatedSubarray | phased.PartitionedArray |
phased.ConformalArray | phased.CosineAntennaElement |
phased.CustomAntennaElement | phased.IsotropicAntennaElement
| phased.ULA | phased.HeterogeneousULA |
phased.HeterogeneousURA

Related
Examples

• Phased Array Gallery

1-1216

../examples/phased-array-gallery.html

phased.URA.clone

Purpose Create URA object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-1217

phased.URA.collectPlaneWave

Purpose Simulate received plane waves

Syntax Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description Y = collectPlaneWave(H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave(H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

Input
Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

1-1218

phased.URA.collectPlaneWave

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output
Arguments

Y

Received signals. Y is an N-column matrix, where N is the number
of elements in the array H. Each column of Y is the received signal
at the corresponding array element, with all incoming signals
combined.

Examples Simulate the received signal at a 6-element URA. The array has a
rectangular lattice with two elements in the row direction and three
elements in the column direction.

The signals arrive from 10 degrees and 30 degrees azimuth. Both
signals have an elevation angle of 0 degrees. Assume the propagation
speed is the speed of light and the carrier frequency of the signal is
100 MHz.

hURA = phased.URA([2 3]);
y = collectPlaneWave(hURA,randn(4,2),[10 30],1e8,...

physconst('LightSpeed'));

Algorithms collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. This
method does not account for the response of individual elements in
the array.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

1-1219

phased.URA.collectPlaneWave

See Also uv2azel | phitheta2azel

1-1220

phased.URA.getElementPosition

Purpose Positions of array elements

Syntax POS = getElementPosition(H)
POS = getElementPosition(H,ELEIDX)

Description POS = getElementPosition(H) returns the element positions of the
URA H. POS is a 3-by-N matrix where N is the number of elements in
H. Each column of POS defines the position of an element in the local
coordinate system, in meters, using the form [x; y; z].

For details regarding the local coordinate system of the URA, enter
phased.URA.coordinateSystemInfo.

POS = getElementPosition(H,ELEIDX) returns the positions of the
elements that are specified in the element index vector, ELEIDX. The
index of a URA runs down each column, then to the next column to
the right. For example, in a URA with 4 elements in each row and 3
elements in each column, the element in the third row and second
column has an index value of 6.

Examples Construct a default URA with a rectangular lattice, and obtain the
element positions.

ha = phased.URA;
pos = getElementPosition(ha)

1-1221

phased.URA.getNumElements

Purpose Number of elements in array

Syntax N = getNumElements(H)

Description N = getNumElements(H) returns the number of elements, N, in the
URA object H.

Examples Construct a default URA, and obtain the number of elements.

ha = phased.URA;
N = getNumElements(ha)

1-1222

phased.URA.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1223

phased.URA.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1224

phased.URA.getTaper

Purpose Array element tapers

Syntax wts = getTaper(h)

Description wts = getTaper(h) returns the tapers, wts, applied to each element
of the phased uniform rectangular array (URA), h. Tapers are often
referred to as weights.

Input
Arguments

h - Uniform rectangular array
phased.URA System object

Uniform rectangular array specified as phased.URA System object.

Output
Arguments

wts - Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued
vector, where N is the number of elements in the array.

Examples URA Array Element Tapering

Construct a 5-by-2 element URA with a Taylor window taper along each
column. Then, draw the array showing the element taper shading.

taper = taylorwin(5);
ha = phased.URA([5,2],'Taper',[taper,taper]);
w = getTaper(ha)
viewArray(ha,'ShowTaper',true);

w =

0.5181
1.2029
1.5581
1.2029
0.5181
0.5181
1.2029

1-1225

phased.URA.getTaper

1.5581
1.2029
0.5181

1-1226

phased.URA.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the URA System
object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1227

phased.URA.isPolarizationCapable

Purpose Polarization capability

Syntax flag = isPolarizationCapable(h)

Description flag = isPolarizationCapable(h) returns a Boolean value, flag,
indicating whether the array supports polarization. An array supports
polarization if all of its constituent sensor elements support polarization.

Input
Arguments

h - Uniform rectangular array

Uniform rectangular array specified as phased.URA System object.

Output
Arguments

flag - Polarization-capability flag

Polarization-capability flag returned as a Boolean value, true, if
the array supports polarization or, false, if it does not.

Examples Short-Dipole Antenna Array Polarization

Determine whether an array of phased.ShortDipoleAntennaElement
short-dipole antenna element supports polarization.

h = phased.ShortDipoleAntennaElement(...
'FrequencyRange',[1e9 10e9]);

ha = phased.URA([3,2],'Element',h);
isPolarizationCapable(ha)

ans =

1

The returned value true (1) shows that this array supports
polarization.

1-1228

phased.URA.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row
vector. Values must lie within the range specified by a property of
H. That property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has
no response at frequencies outside that range. If you set the
'RespCut' property of H to '3D', FREQ must be a scalar. When
FREQ is a row vector, plotResponse draws multiple frequency
responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding

1-1229

phased.URA.plotResponse

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’CutAngle’

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must
be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

’Format’

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

’NormalizeResponse’

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing
it. This parameter is not applicable when you set the Unit
parameter value to 'dbi'.

Default: true

’OverlayFreq’

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

1-1230

phased.URA.plotResponse

Default: true

’Polarization’

Specify the polarization options for plotting the array response
pattern. The allowable values are |'None' | 'Combined' | 'H'
| 'V' | where

• 'None' specifies plotting a nonpolarized response pattern

• 'Combined' specifies plotting a combined polarization response
pattern

• 'H' specifies plotting the horizontal polarization response
pattern

• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed
value is 'None'. This parameter is not applicable when you set
the Unit parameter value to 'dbi'.

Default: 'None'

’RespCut’

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

’Unit’

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'.
This parameter determines the type of plot that is produced.

1-1231

phased.URA.plotResponse

Unit value Plot type

db power pattern in dB scale

mag field pattern

pow power pattern

dbi directivity

Default: 'db'

’Weights’

Weight values applied to the array, specified as a length-N
column vector or N-by-M matrix. The dimension N is the number
of elements in the array. The interpretation of M depends upon
whether the input argument FREQ is a scalar or row vector.

Weights
Dimensions

FREQ Dimension Purpose

N-by-1 column
vector

Scalar or 1-by-M
row vector

Apply one set
of weights for
the same single
frequency or all M
frequencies.

Scalar Apply all of the M
different columns
in Weights for
the same single
frequency.

N-by-M matrix
1-by-M row vector Apply each of theM

different columns
in Weights for
the corresponding
frequency in FREQ.

’AzimuthAngles’

1-1232

phased.URA.plotResponse

Azimuth angles for plotting array response, specified as a row
vector. The AzimuthAngles parameter sets the display range and
resolution of azimuth angles for visualizing the radiation pattern.
This parameter is allowed only when the RespCut parameter is
set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180°
and 180° and must be in nondecreasing order. When you set the
RespCut parameter to '3D', you can set the AzimuthAngles and
ElevationAngles parameters simultaneously.

Default: [-180:180]

’ElevationAngles’

Elevation angles for plotting array response, specified as a row
vector. The ElevationAngles parameter sets the display range
and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut
parameter is set to 'El' or '3D' and the Format parameter
is set to 'Line' or 'Polar'. The values of elevation angles
should lie between –90° and 90° and must be in nondecreasing
order. When yous set the RespCut parameter to '3D', you can
set the ElevationAngles and AzimuthAngles parameters
simultaneously.

Default: [-90:90]

’UGrid’

U coordinate values for plotting array response, specified as a
row vector. The UGrid parameter sets the display range and
resolution of the U coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to 'U' or '3D'. The values of UGrid should be between –1 and
1 and should be specified in nondecreasing order. You can set the
UGrid and VGrid parameters simultaneously.

1-1233

phased.URA.plotResponse

Default: [-1:0.01:1]

’VGrid’

V coordinate values for plotting array response, specified as a
row vector. The VGrid parameter sets the display range and
resolution of the V coordinates for visualizing the radiation
pattern in U/V space. This parameter is allowed only when the
Format parameter is set to 'UV' and the RespCut parameter is
set to '3D'. The values of VGrid should be between –1 and 1 and
should be specified in nondecreasing order. You can set VGrid and
UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples Azimuth Response of URA

This example shows how to construct a rectangular lattice 3-by-2 URA
and plot that array’s azimuth response.

ha = phased.URA('Size',[3 2]);
fc = 1e9;
c = physconst('LightSpeed');
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');

1-1234

phased.URA.plotResponse

Array Response and Directivity of URA in U/V Space

This example shows how to construct a rectangular lattice 3-by-2 URA.
Plot the cut of the array response in space.

ha = phased.URA('Size',[3 2]);
c = physconst('lightspeed');
plotResponse(ha,1e9,c,'Format','UV');

1-1235

phased.URA.plotResponse

Plot the directivity.

plotResponse(ha,1e9,c,'Format','UV','Unit','dbi');

1-1236

phased.URA.plotResponse

Array Response of URA for Subrange of U/V Space

This example shows how to construct a 5-by-5 square URA and plot the
3-D response in space. However, restrict the range in space
using the UGrid and VGrid parameters.

ha = phased.URA([5,5]);
fc = 5e8;
c = physconst('LightSpeed');
plotResponse(ha,fc,c,'RespCut','3D','Format','UV',...

1-1237

phased.URA.plotResponse

'UGrid',[-0.25:.01:.25],'VGrid',[-0.25:.01:.25]);

Array Response of URA with Two Sets of Weights

This example shows how to construct a square 5-by-5 URA array having
elements spaced 0.3 meters apart. Apply both uniform weights and
tapered weights at a single frequency using the Weights parameter.
Choose the tapered weight values to be smallest at the edges and
increasing towards the center. Then, show that the tapered weight set
reduces the adjacent sidelobes while broadening the main lobe.

1-1238

phased.URA.plotResponse

ha = phased.URA('Size',[5 5],'ElementSpacing',[0.3,0.3]);
fc = 1e9;
c = physconst('LightSpeed');
wts1 = ones(5,5);
wts1 = wts1(:);
wts1 = wts1/sum(wts1);
wts2 = 0.3*ones(5,5);
wts2(2:4,2:4) = 0.7;
wts2(3,3) = 1;
wts2 = wts2(:);
wts2 = wts2/sum(wts2);
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar','Weights',[wts1,w

1-1239

phased.URA.plotResponse

See Also uv2azel | azel2uv

1-1240

phased.URA.plotGratingLobeDiagram

Purpose Plot grating lobe diagram of array

Syntax plotGratingLobeDiagram(H,FREQ)
plotGratingLobeDiagram(H,FREQ,ANGLE)
plotGratingLobeDiagram(H,FREQ,ANGLE,C)
plotGratingLobeDiagram(H,FREQ,ANGLE,C,F0)
hPlot = plotGratingLobeDiagram(___)

Description plotGratingLobeDiagram(H,FREQ) plots the grating lobe diagram of
an array in the u-v coordinate system. The System object H specifies
the array. The argument FREQ specifies the signal frequency and
phase-shifter frequency. The array, by default, is steered to 0° azimuth
and 0° elevation.

A grating lobe diagram displays the positions of the peaks of the
narrowband array pattern. The array pattern depends only upon the
geometry of the array and not upon the types of elements which make
up the array. Visible and nonvisible grating lobes are displayed as open
circles. Only grating lobe peaks near the location of the mainlobe are
shown. The mainlobe itself is displayed as a filled circle.

plotGratingLobeDiagram(H,FREQ,ANGLE), in addition, specifies the
array steering angle, ANGLE.

plotGratingLobeDiagram(H,FREQ,ANGLE,C), in addition, specifies
the propagation speed by C.

plotGratingLobeDiagram(H,FREQ,ANGLE,C,F0), in addition, specifies
an array phase-shifter frequency, F0, that differs from the signal
frequency, FREQ. This argument is useful when the signal no longer
satisfies the narrowband assumption and, allows you to estimate the
size of beam squint.

hPlot = plotGratingLobeDiagram(___) returns the handle to the
plot for any of the input syntax forms.

Input
Arguments

H

Antenna or microphone array, specified as a System object.

1-1241

phased.URA.plotGratingLobeDiagram

FREQ

Signal frequency, specified as a scalar. Frequency units are hertz.
Values must lie within a range specified by the frequency property
of the array elements contained in H.Element. The frequency
property is named FrequencyRange or FrequencyVector,
depending on the element type.

ANGLE

Array steering angle, specified as either a 2-by-1 vector or a scalar.
If ANGLE is a vector, it takes the form [azimuth;elevation]. The
azimuth angle must lie in the range [-180 ,180]. The elevation
angle must lie in the range [-90 ,90]. All angle values are
specified in degrees. If the argument ANGLE is a scalar, it specifies
only the azimuth angle where the corresponding elevation angle
is 0°.

Default: [0;0]

C

Signal propagation speed, specified as a scalar. Units are meters
per second.

Default: Speed of light in vacuum

F0

Phase-shifter frequency of the array, specified as a scalar.
Frequency units are hertz When this argument is omitted, the
phase-shifter frequency is assumed to be the signal frequency,
FREQ.

Default: FREQ

Examples Create Grating Lobe Diagram for Microphone URA

Plot the grating lobe diagram for an 11-by-9-element uniform
rectangular array having element spacing equal to one-half wavelength.

1-1242

phased.URA.plotGratingLobeDiagram

Assume the operating frequency of the array is 10 kHz. All elements are
omnidirectional microphone elements. Steer the array in the direction
20 degrees in azimuth and 30 degrees in elevation. The speed of sound
in air is 344.21 m/s at 21 deg C.

cair = 344.21;
f = 10000;
lambda = cair/f;
sMic = phased.OmnidirectionalMicrophoneElement(...

'FrequencyRange',[20 20000]);
sURA = phased.URA('Element',sMic,'Size',[11,9],...

'ElementSpacing',0.5*lambda*[1,1]);
plotGratingLobeDiagram(sURA,f,[20;30],cair);

1-1243

phased.URA.plotGratingLobeDiagram

The main lobe of the array is indicated by a filled black circle. The
grating lobes in visible and nonvisible regions are indicated by unfilled
black circles. The visible region is the region in u-v coordinates for
which . The visible region is shown as a unit circle
centered at the origin. Because the array spacing is less than one-half
wavelength, there are no grating lobes in the visible region of space.
There are an infinite number of grating lobes in the nonvisible regions,
but only those in the range [-3,3] are shown.

1-1244

phased.URA.plotGratingLobeDiagram

The grating-lobe free region, shown in green, is the range of directions
of the main lobe for which there are no grating lobes in the visible
region. In this case, it coincides with the visible region.

The white areas of the diagram indicate a region where no grating lobes
are possible.

Create Grating Lobe Diagram for Undersampled Microphone
URA

Plot the grating lobe diagram for an 11-by-9-element uniform
rectangular array having element spacing greater than one-half
wavelength. Grating lobes are plotted in u-v coordinates.

Assume the operating frequency of the array is 10 kHz and the
spacing between elements is 0.75 of a wavelength. All elements are
omnidirectional microphone elements. Steer the array in the direction
20 degrees in azimuth and 30 degrees in elevation. The speed of sound
in air is 344.21 m/s at 21 deg C.

cair = 344.21;
f = 10000;
lambda = cair/f;
sMic = phased.OmnidirectionalMicrophoneElement(...

'FrequencyRange',[20 20000]);
sURA = phased.URA('Element',sMic,'Size',[11,9],...

'ElementSpacing',0.75*lambda*[1,1]);
plotGratingLobeDiagram(sURA,f,[20;30],cair);

1-1245

phased.URA.plotGratingLobeDiagram

The main lobe of the array is indicated by a filled black circle. The
grating lobes in visible and nonvisible regions are indicated by unfilled
black circles. The visible region is the region in u-v coordinates for
which . The visible region is shown as a unit circle centered
at the origin. Because the array spacing is greater than one-half
wavelength, there are grating lobes in the visible region of space. There
are an infinite number of grating lobes in the nonvisible regions, but
only those in the range [-3,3] are shown.

1-1246

phased.URA.plotGratingLobeDiagram

The grating-lobe free region, shown in green, is the range of directions of
the main lobe for which there are no grating lobes in the visible region.
In this case, it lies inside the visible region. Because the mainlobe is
outside the green area, there is a grating lobe within the visible region.

Create Grating Lobe Diagram for Microphone URA with
Frequency Shift

Plot the grating lobe diagram for an 11-by-9-element uniform
rectangular array having element spacing greater than one-half
wavelength. Apply a 20% phase-shifter frequency offset. Grating lobes
are plotted in u-v coordinates.

Assume the operating frequency of the array is 10 kHz and the
spacing between elements is 0.75 of a wavelength. All elements are
omnidirectional microphone elements. Steer the array in the direction
20 degrees in azimuth and 30 degrees in elevation. The shifted
frequency is 12000 Hz. The speed of sound in air is 344.21 m/s at 21
deg C.

cair = 344.21;
f = 10000;
f0 = 12000;
lambda = cair/f;
sMic = phased.OmnidirectionalMicrophoneElement(...

'FrequencyRange',[20 20000]);
sURA = phased.URA('Element',sMic,'Size',[11,9],...

'ElementSpacing',0.75*lambda*[1,1]);
plotGratingLobeDiagram(sURA,f,[20;30],cair,f0);

1-1247

phased.URA.plotGratingLobeDiagram

The mainlobe of the array is indicated by a filled black circle. The
mainlobe has moved from its position in the previous example due to
the frequency shift. The grating lobes in visible and nonvisible regions
are indicated by unfilled black circles. The visible region is the region in
u-v coordinates for which . The visible region is shown as a
unit circle centered at the origin. Because the array spacing is greater
than one-half wavelength, there are grating lobes in the visible region
of space. There are an infinite number of grating lobes in the nonvisible
regions, but only those in the range [-3,3] are shown.

1-1248

phased.URA.plotGratingLobeDiagram

The grating-lobe free region, shown in green, is the range of directions of
the main lobe for which there are no grating lobes in the visible region.
In this case, it lies inside the visible region. Because the mainlobe is
outside the green area, there is a grating lobe within the visible region.

Concepts Grating Lobes

Spatial undersampling of a wavefield by an array gives rise to visible
grating lobes. If you think of the wavenumber, k, as analogous to
angular frequency, then you must sample the signal at spatial intervals
smaller than π/kmax (or λmin/2) in order to remove aliasing. The
appearance of visible grating lobes is also known as spatial aliasing.
The variable kmax is the largest wavenumber value present in the signal.

The directions of maximum spatial response of a URA are determined
by the peaks of the array’s array pattern (alternatively called the beam
pattern or array factor). Peaks other than the mainlobe peak are
called grating lobes. For a URA, the array pattern depends only on
the wavenumber component of the wavefield in the array plane (the y
and z directions for the phased.URA System object). The wavenumber
components are related to the look-direction of an arriving wavefield by
ky = –2π sin az cos el/λ and kz = –2π sin el/λ. The angle az is azimuth
angle of the arriving wavefield. The angle el is elevation angle of the
arriving wavefield. The look-direction points away from the array to
the wavefield source.

The array pattern possesses an infinite number of periodically-spaced
peaks that are equal in strength to the mainlobe peak. If you steer the
array to the az0, el0 azimuth and elevation direction, the array pattern
for the URA has its mainlobe peak at the wavenumber value, ky0 = –2π
sin az0 cos el0/λ, kz0 = –2π sin el0/λ. The array pattern has strong peaks
at kym = ky0 + 2π m/dy, kzn = kz0 + 2π n/dz. for integral values of m and
n. The quantities dy and dz are the inter-element spacings in the y- and
z-directions, respectively. Expressed in terms of direction cosines, the
grating lobes occur at um = u0 –mλ/dy and vn = v0 –nλ/dz. The mainlobe
direction cosines are given by u0 = sin az0 cos el0 and v0 = sin el0 when
expressed in terms of the look-direction.

1-1249

phased.URA.plotGratingLobeDiagram

Grating lobes can be visible or nonvisible, depending upon the value of
um

2 + vn
2. When um

2 + vn
2 ≤ 1, the look direction represent a visible

direction. When the value is greater than one, the grating lobe is
nonvisible. For each visible grating lobe, you can compute a look
direction (azm,n,elm,n) from um = sin azm cos elm and vn = sin eln. The
spacing of grating lobes depends upon λ/d. When λ/d is small enough,
multiple grating lobe peaks can correspond to physical look-directions.

References
[1] Van Trees, H.L. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | azel2uv

1-1250

phased.URA.release

Purpose Allow property value and input characteristics

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1251

phased.URA.step

Purpose Output responses of array elements

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP
at operating frequencies specified in FREQ and directions specified in
ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Array object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector
of length L. Typical values are within the range specified by a
property of H.Element. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the
array. The element has zero response at frequencies outside that
range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle

1-1252

phased.URA.step

must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

Output
Arguments

RESP

Voltage responses of the phased array. The output depends on
whether the array supports polarization or not.

• If the array is not capable of supporting polarization, the
voltage response, RESP, has the dimensions N-by-M-by-L. N
is the number of elements in the array. The dimension M is
the number of angles specified in ANG. L is the number of
frequencies specified in FREQ. For any element, the columns
of RESP contain the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage
response, RESP, is a MATLAB struct containing two fields,
RESP.H and RESP.V. The field, RESP.H, represents the array’s
horizontal polarization response, while RESP.V represents
the array’s vertical polarization response. Each field has the
dimensions N-by-M-by-L. N is the number of elements in the
array, and M is the number of angles specified in ANG. L is
the number of frequencies specified in FREQ. Each column of
RESP contains the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

1-1253

phased.URA.step

Examples Response of a 2-by-2 URA of Short-Dipole Antennas

Construct a 2-by-2 rectangular lattice URA of short-dipole antenna
elements. Then, find the response of each element at boresight. Assume
the operating frequency is 1 GHz.

h = phased.ShortDipoleAntennaElement;
ha = phased.URA('Element',h,'Size',[2 2]);
fc = 1e9; ang = [0;0];
resp = step(ha,fc,ang);
disp(resp.V);

-1.2247
-1.2247
-1.2247
-1.2247

See Also uv2azel | phitheta2azel

1-1254

phased.URA.viewArray

Purpose View array geometry

Syntax viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray(___)

Description viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(___) returns the handle of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

Input
Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’ShowIndex’

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

’ShowNormals’

1-1255

phased.URA.viewArray

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

’ShowTaper’

Set this value to true to specify whether to change the element
color brightness in proportion to the element taper magnitude.
When this value is set to false, all elements are drawn with the
same color.

Default: false

’Title’

String specifying the title of the plot.

Default: 'Array Geometry'

Output
Arguments

hPlot

Handle of array elements in figure window.

Examples Geometry, Normal Directions, and Indices of URA Elements

This example shows how to display the element positions, normal
directions, and indices for all elements of a 4-by-4 square URA.

ha = phased.URA(4);
viewArray(ha,'ShowNormals',true,'ShowIndex','All');

1-1256

phased.URA.viewArray

See Also phased.ArrayResponse

Related
Examples

• Phased Array Gallery

1-1257

../examples/phased-array-gallery.html

phased.WidebandCollector

Purpose Wideband signal collector

Description The WidebandCollector object implements a wideband signal collector.

To compute the collected signal at the sensor(s):

1 Define and set up your wideband signal collector. See “Construction”
on page 1-1258.

2 Call step to collect the signal according to the properties of
phased.WidebandCollector. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.WidebandCollector creates a wideband signal collector
System object, H. The object collects incident wideband signals from
given directions using a sensor array or a single element.

H = phased.WidebandCollector(Name,Value) creates a wideband
signal collector object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties Sensor

Sensor element or sensor array

Sensor element or sensor array specified as a System object in
the Phased Array System Toolbox. A sensor array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

1-1258

phased.WidebandCollector

Default: Speed of light

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default
value corresponds to 1 MHz.

Default: 1e6

ModulatedInput

Assume modulated input

Set this property to true to indicate the input signal is
demodulated at a carrier frequency.

Default: true

CarrierFrequency

Carrier frequency

Specify the carrier frequency (in hertz) as a positive scalar. The
default value of this property corresponds to 1 GHz. This property
applies when the ModulatedInput property is true.

Default: 1e9

WeightsInputPort

Enable weights input

To specify weights, set this property to true and use the
corresponding input argument when you invoke step. If you do
not want to specify weights, set this property to false.

Default: false

EnablePolarization

1-1259

phased.WidebandCollector

EnablePolarization

Set this property to true to simulate the collection of polarized
waves. Set this property to false to ignore polarization. This
property applies when the sensor specified in the Sensor property
is capable of simulating polarization.

Default: false

Wavefront

Type of incoming wavefront

Specify the type of incoming wavefront as one of 'Plane', or
'Unspecified':

• If you set the Wavefront property to 'Plane', the input signals
are multiple plane waves impinging on the entire array. Each
plane wave is received by all collecting elements. If the Sensor
property is an array that contains subarrays, the Wavefront
property must be 'Plane'.

• If you set the Wavefront property to 'Unspecified', the input
signals are individual waves impinging on individual sensors.

Default: 'Plane'

Methods clone Create wideband collector object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

1-1260

phased.WidebandCollector

release Allow property value and input
characteristics changes

step Collect signals

Examples Collect signal with a single antenna.

ha = phased.IsotropicAntennaElement;
hc = phased.WidebandCollector('Sensor',ha);
x = [1;1];
incidentAngle = [10 30]';
y = step(hc,x,incidentAngle);

Collect a far field signal with a 5-element array.

ha = phased.ULA('NumElements',5);
hc = phased.WidebandCollector('Sensor',ha);
x = [1;1];
incidentAngle = [10 30]';
y = step(hc,x,incidentAngle);

Collect signal with a 3-element array. Each antenna collects a separate
input signal from a separate direction.

ha = phased.ULA('NumElements',3);
hc = phased.WidebandCollector('Sensor',ha,...

'Wavefront','Unspecified');
x = rand(10,3); % Each column is a signal for one element
incidentAngle = [10 0; 20 5; 45 2]'; % 3 angles for 3 signals
y = step(hc,x,incidentAngle);

Algorithms If the Wavefront property value is 'Plane',
phased.WidebandCollector does the following for each plane wave
signal:

1-1261

phased.WidebandCollector

1 Decomposes the signal into multiple subbands.

2 Uses the phase approximation of the time delays across collecting
elements in the far field for each subband.

3 Regroups the collected signals in all the subbands to form the output
signal.

If the Wavefront property value is 'Unspecified', phased.Wideband
Collector collects each channel independently.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.Collector

1-1262

phased.WidebandCollector.clone

Purpose Create wideband collector object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

1-1263

phased.WidebandCollector.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

1-1264

phased.WidebandCollector.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

1-1265

phased.WidebandCollector.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
WidebandCollector System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

1-1266

phased.WidebandCollector.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

1-1267

phased.WidebandCollector.step

Purpose Collect signals

Syntax Y = step(H,X,ANG)
Y = step(H,X,ANG,LAXES)
Y = step(H,X,ANG,WEIGHTS)
Y = step(H,X,ANG,STEERANGLE)
Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE)

Description Y = step(H,X,ANG) collects signals X arriving from directions ANG. The
collection process depends on the Wavefront property of H, as follows:

• If Wavefront has the value 'Plane', each collecting element collects
all the far field signals in X. Each column of Y contains the output of
the corresponding element in response to all the signals in X.

• If Wavefront has the value 'Unspecified', each collecting element
collects only one impinging signal from X. Each column of Y
contains the output of the corresponding element in response to the
corresponding column of X. The 'Unspecified' option is available
when the Sensor property of H does not contain subarrays.

Y = step(H,X,ANG,LAXES) uses LAXES as the local coordinate
system axes directions. This syntax is available when you set the
EnablePolarization property to true.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This
syntax is available when you set the WeightsInputPort property to
true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray
steering angle. This syntax is available when you configure
H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE) combines all input
arguments. This syntax is available when you configure H so that
H.WeightsInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
'Time'.

1-1268

phased.WidebandCollector.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Collector object.

X

Arriving signals. Each column of X represents a separate signal.
The specific interpretation of X depends on the Wavefront
property of H.

Wavefront
Property
Value

Description

'Plane' Each column of X is a far field signal.

'Unspecified' Each column of X is the signal impinging
on the corresponding element. In this case,
the number of columns in X must equal the
number of collecting elements in the Sensor
property.

• If the EnablePolarization property value is set to false, X
is a matrix. The number of columns of the matrix equals the
number of separate signals.

• If the EnablePolarization property value is set to true, X is
a row vector of MATLAB struct type. The dimension of the
struct array equals the number of separate signals. Each

1-1269

phased.WidebandCollector.step

structmember contains three column-vector fields, X, Y, and Z,
representing the x, y, and z components of the polarized wave
vector signals in the global coordinate system.

ANG

Incident directions of signals, specified as a two-row matrix.
Each column specifies the incident direction of the corresponding
column of X. Each column of ANG has the form [azimuth;
elevation], in degrees. The azimuth angle must be between –180
and 180 degrees, inclusive. The elevation angle must be between
–90 and 90 degrees, inclusive.

LAXES

Local coordinate system. LAXES is a 3-by-3 matrix whose columns
specify the local coordinate system’s orthonormal x, y, and z axes,
respectively. Each axis is specified in terms of [x;y;z] with
respect to the global coordinate system. This argument is only
used when the EnablePolarization property is set to true.

WEIGHTS

Vector of weights. WEIGHTS is a column vector of length M, where
M is the number of collecting elements.

Default: ones(M,1)

STEERANGLE

Subarray steering angle, specified as a length-2 column vector.
The vector has the form [azimuth; elevation], in degrees. The
azimuth angle must be between –180 and 180 degrees, inclusive.
The elevation angle must be between –90 and 90 degrees,
inclusive.

Output
Arguments

Y

Collected signals. Each column of Y contains the output of the
corresponding element. The output is the response to all the

1-1270

phased.WidebandCollector.step

signals in X, or one signal in X, depending on the Wavefront
property of H.

Examples Collect signal with a single antenna.

ha = phased.IsotropicAntennaElement;
hc = phased.WidebandCollector('Sensor',ha);
x = [1;1];
incidentAngle = [10 30]';
y = step(hc,x,incidentAngle);

Collect a far field signal with a 5-element array.

ha = phased.ULA('NumElements',5);
hc = phased.WidebandCollector('Sensor',ha);
x = [1;1];
incidentAngle = [10 30]';
y = step(hc,x,incidentAngle);

Collect signal with a 3-element array. Each antenna collects a separate
input signal from a separate direction.

ha = phased.ULA('NumElements',3);
hc = phased.WidebandCollector('Sensor',ha,...

'Wavefront','Unspecified');
x = rand(10,3); % Each column is a signal for one element
incidentAngle = [10 0; 20 5; 45 2]'; % 3 angles for 3 signals
y = step(hc,x,incidentAngle);

Algorithms If the Wavefront property value is 'Plane',
phased.WidebandCollector does the following for each plane wave
signal:

1 Decomposes the signal into multiple subbands.

1-1271

phased.WidebandCollector.step

2 Uses the phase approximation of the time delays across collecting
elements in the far field for each subband.

3 Regroups the collected signals in all the subbands to form the output
signal.

If the Wavefront property value is 'Unspecified', phased.Wideband
Collector collects each channel independently.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

1-1272

2

Functions-Alphabetical List

aictest

Purpose Dimension of signal subspace

Syntax nsig = aictest(X)
nsig = aictest(X,'fb')

Description nsig = aictest(X) estimates the number of signals, nsig, present in
a snapshot of data, X, that impinges upon the sensors in an array. The
estimator uses the Akaike Information Criterion test (AIC). The input
argument, X, is a complex-valued matrix containing a time sequence of
data samples for each sensor. Each row corresponds to a single time
sample for all sensors.

nsig = aictest(X,'fb') estimates the number of signals. Before
estimating, it performs forward-backward averaging on the sample
covariance matrix constructed from the data snapshot, X. This syntax
can use any of the input arguments in the previous syntax.

Input
Arguments

X - Data snapshot
Complex-valued K-by-N matrix

Data snapshot, specified as a complex-valued, K-by-N matrix. A
snapshot is a sequence of time-samples taken simultaneous at each
sensor. In this matrix, K represents the number of time samples of the
data, while N represents the number of sensor elements.

Example: [–0.1211 + 1.2549i, 0.1415 + 1.6114i, 0.8932 + 0.9765i;]

Data Types
double
Complex Number Support: Yes

Output
Arguments

nsig - Dimension of signal subspace
Non-negative integer

Dimension of signal subspace, returned as a non-negative integer. The
dimension of the signal subspace is the number of signals in the data.

2-2

aictest

Examples Estimate the Signal Subspace Dimensions for Two Arriving
Signals

Construct a data snapshot for two plane waves arriving at a
half-wavelength-spaced uniform line array with 10 elements. The plane
waves arrive from 0° and –25° azimuth, both with elevation angles of
0°. Assume the signals arrive in the presence of additive noise that is
both temporally and spatially Gaussian white noise. For each signal,
the SNR is 5 dB. Take 300 samples to build a 300-by-10 data snapshot.
Then, solve for the number of signals using aictest.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
angles = [0 -25];
x = sensorsig(elementPos,300,angles,db2pow(-5));
Nsig = aictest(x)

Nsig =

2

The result shows that the number of signals is two, as expected.

Estimate the Signal Subspace Dimension with
Forward-Backward Smoothing

Construct a data snapshot for two plane waves arriving at a
half-wavelength-spaced uniform line array with 10 elements.
Correlated plane waves arrive from 0° and 10° azimuth, both with
elevation angles of 0°. Assume the signals arrive in the presence of
additive noise that is both temporally and spatially Gaussian white
noise. For each signal, the SNR is 10 dB. Take 300 samples to build a
300-by-10 data snapshot. Then, solve for the number of signals using
aictest.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;

2-3

aictest

angles = [0 10];
ncov = db2pow(-10);
scov = [1 .5]'*[1 .5];
x = sensorsig(elementPos,300,angles,ncov,scov);
Nsig = aictest(x)

Nsig =

1

This result shows that aictest function cannot determine the number
of signals correctly when the signals are correlated.

Now, try the option of forward-backward smoothing.

Nsig = aictest(x,'fb')

Nsig =

2

The addition of forward-backward smoothing yields the correct number
of signals.

Definitions Estimating the Number of Sources

AIC and MDL tests

Direction finding algorithms such as MUSIC and ESPRIT require
knowledge of the number of sources of signals impinging on the array
or equivalently, the dimension, d, of the signal subspace. The Akaike
Information Criterion (AIC) and the Minimum Description Length
(MDL) formulas are two frequently-used estimators for obtaining that
dimension. Both estimators assume that, besides the signals, the
data contains spatially and temporally white Gaussian random noise.
Finding the number of sources is equivalent to finding the multiplicity
of the smallest eigenvalues of the sampled spatial covariance matrix.
The sample spatial covariance matrix constructed from a data snapshot
is used in place of the actual covariance matrix.

2-4

aictest

A requirement for both estimators is that the dimension of the signal
subspace be less than the number of sensors, N, and that the number of
time samples in the snapshot, K, be much greater than N.

A variant of each estimator exists when forward-backward averaging is
employed to construct the spatial covariance matrix. Forward-backward
averaging is useful for the case when some of the sources are highly
correlated with each other. In that case, the spatial covariance matrix
may be ill conditioned. Forward-backward averaging can only be used
for certain types of symmetric arrays, called centro-symmetric arrays.
Then the forward-backward covariance matrix can be constructed from
the sample spatial covariance matrix, S, using SFB = S + JS*J where J
is the exchange matrix. The exchange matrix maps array elements into
their symmetric counterparts. For a line array, it would be the identity
matrix flipped from left to right.

All the estimators are based on a cost function

L d K N d
N d

d

i
i d

N

i
i d

N N d

() () ln 
























 

 







1

1

1

1






















plus an added penalty term. The value λi represent the smallest
(N–d) eigenvalues of the spatial covariance matrix. For each specific
estimator, the solution for d is given by

• AIC

ˆ argmin () ()d L d d N dAIC
d

d   2

• AIC for forward-backward averaged covariance matrices

ˆ argmin () ():d L d d N dAIC FB
d

d   







1
2

2 1

2-5

aictest

• MDL

ˆ argmin () (()) lnd L d d N d KMDL
d

d   







1
2

2 1

• MDL for forward-backward averaged covariance matrices

ˆ argmin () () lnd L d d N d KMDL FB
d

d   







1
4

2 1

References
[1] Van Trees, H.L. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also espritdoa | mdltest | rootmusicdoa | spsmooth

2-6

albersheim

Purpose Required SNR using Albersheim’s equation

Syntax SNR = albersheim(prob_Detection,prob_FalseAlarm)
SNR = albersheim(prob_Detection,prob_FalseAlarm,N)

Description SNR = albersheim(prob_Detection,prob_FalseAlarm) returns the
signal-to-noise ratio in decibels. This value indicates the ratio required
to achieve the given probabilities of detection prob_Detection and
false alarm prob_FalseAlarm for a single sample.

SNR = albersheim(prob_Detection,prob_FalseAlarm,N) determines
the required SNR for the noncoherent integration of N samples.

Definitions Albersheim’s Equation

Albersheim’s equation uses a closed-form approximation to calculate
the SNR. This SNR value is required to achieve the specified detection
and false-alarm probabilities for a nonfluctuating target in independent
and identically distributed Gaussian noise. The approximation is valid
for a linear detector and is extensible to the noncoherent integration of
N samples.

Let

A
PFA

= ln .0 62

and

B P
P
D

D
= −ln

1

where PFA and PD are the false-alarm and detection probabilities.

Albersheim’s equation for the required SNR in decibels is:

SNR = − + + + + +5 6 2 4 54 0 44 0 12 1 710 10log [. . / .]log (. .)N N A AB B

where N is the number of noncoherently integrated samples.

2-7

albersheim

Examples Compute the required single sample SNR for a detection probability of
0.9 as a function of the false-alarm probability.

Pfa=0.0001:0.0001:.01; % False-alarm probabilities
Pd=0.9; % probability of detection
SNR = zeros(1,length(Pfa)); % preallocate space
for j=1:length(Pfa)

SNR(j) = albersheim(Pd,Pfa(j));
end
plot(Pfa,SNR,'k','linewidth',2);
axis tight;
xlabel('Probability of False Alarm');
ylabel('Required SNR (dB)');
title('Required SNR for P_D=0.9 (N=1)');

Compute the required SNR for 10 noncoherently integrated samples
as a function of the false-alarm probability with the probability of
detection equal to 0.9.

2-8

albersheim

Pfa=0.0001:0.0001:.01; % False-alarm probabilities
Pd=0.9; % probability of detection
SNR = zeros(1,length(Pfa)); % preallocate space
for j=1:length(Pfa)

SNR(j) = albersheim(Pd,Pfa(j),10);
end
plot(Pfa,SNR,'k','linewidth',2);
axis tight;
xlabel('Probability of False Alarm');
ylabel('Required SNR (dB)');
title('Required SNR for P_D=0.9 (N=10)');

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005, p. 329.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001, p. 49.

See Also shnidman

2-9

ambgfun

Purpose Ambiguity function

Syntax afmag = ambgfun(x,Fs,PRF)
[afmag,delay,doppler] = ambgfun(x,Fs,PRF)
[afmag,delay,doppler] = ambgfun(x,Fs,PRF,'Cut','2D')
[afmag,delay] = ambgfun(x,Fs,PRF,'Cut','Doppler')
[afmag,doppler] = ambgfun(x,Fs,PRF,'Cut','Delay')
[afmag,delay] =
ambgfun(x,Fs,PRF,'Cut','Doppler','CutValue',V)
[afmag,doppler] =
ambgfun(x,Fs,PRF,'Cut','Delay','CutValue',V)
ambgfun(x,Fs,PRF)
ambgfun(x,Fs,PRF,'Cut','2D')
ambgfun(x,Fs,PRF,'Cut','Delay')
ambgfun(x,Fs,PRF,'Cut','Doppler')
ambgfun(x,Fs,PRF,'Cut','Delay','CutValue',V)
ambgfun(x,Fs,PRF,'Cut','Doppler','CutValue',V)

Description afmag = ambgfun(x,Fs,PRF) returns the magnitude of the normalized
ambiguity function for the vector x. The sampling of x occurs at Fs
hertz with pulse repetition frequency, PRF. The sampling frequency Fs
divided by the pulse repetition frequency PRF is the number of samples
per pulse.

[afmag,delay,doppler] = ambgfun(x,Fs,PRF) or
[afmag,delay,doppler] = ambgfun(x,Fs,PRF,'Cut','2D')
returns the time delay vector, delay, and the Doppler frequency vector,
doppler.

[afmag,delay] = ambgfun(x,Fs,PRF,'Cut','Doppler') returns
the zero Doppler cut through the 2-D normalized ambiguity function
magnitude.

[afmag,doppler] = ambgfun(x,Fs,PRF,'Cut','Delay') returns
the zero delay cut through the 2-D normalized ambiguity function
magnitude.

[afmag,delay] =
ambgfun(x,Fs,PRF,'Cut','Doppler','CutValue',V) returns a

2-10

ambgfun

one-dimensional cut through the 2-D normalized ambiguity function
magnitude at a Doppler value of V Hertz. V should lie in the
range[-Fs/2,Fs/2].

[afmag,doppler] =
ambgfun(x,Fs,PRF,'Cut','Delay','CutValue',V) returns a
one-dimensional cut through the 2-D normalized ambiguity function
magnitude at a delay value of V seconds. V should lie in the range
[-(length(x)-1)/Fs,(length(x)-1)/Fs].

ambgfun(x,Fs,PRF) or ambgfun(x,Fs,PRF,'Cut','2D') with no
output argument produces a contour plot of the ambiguity function.

ambgfun(x,Fs,PRF,'Cut','Delay') or
ambgfun(x,Fs,PRF,'Cut','Doppler') with no output argument
produces a line plot of the ambiguity function cut.

ambgfun(x,Fs,PRF,'Cut','Delay','CutValue',V) or
ambgfun(x,Fs,PRF,'Cut','Doppler','CutValue',V) with no output
argument produces a line plot of the ambiguity function cut at non-zero
cut values.

Input
Arguments

x

Pulse waveform. x is a row or column vector.

Fs

Sampling frequency in hertz.

PRF

Pulse repetition frequency in hertz.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

2-11

ambgfun

Example: 'Cut','Doppler','CutValue',10 specifies that a vector of
ambiguity function values be produced at a Doppler shift of 10 Hz.

’Cut’ - Direction of one-dimensional cut through ambiguity
function
'Delay'|'Doppler'|'2D'

Used to generate a one–dimensional cut or cross-section through the
ambiguity diagram. The direction of the cut is determined by setting
the value of 'Cut' to 'Delay' or 'Doppler'. The value '2D' generates
a surface plot of the two-dimensional ambiguity function.

The choice of 'Delay' generates a cut at zero time delay. In this case,
the second output argument of ambgfun contains the ambiguity function
values at Doppler shifted values. A cut at non-zero time delay can be
generated using the name-value pair'CutValue' described below.

The choice of 'Doppler' generates a cut at zero Doppler shift. In this
case, the second output argument of ambgfun contains the ambiguity
function values at time-delayed values. A cut at non-zero Doppler can
be generated using the name-value pair 'CutValue' described below.

’CutValue’ - Optional time delay or Doppler shift at which
ambiguity function cut is taken
real scalar

When setting the name-value pair 'Cut' to 'Delay' or 'Doppler',
you can use the name-value pair 'CutValue' to specify a cross-section
that does not coincide with either zero time delay or zero Doppler shift.
However, 'CutValue' should not be used when 'Cut' is set to '2D'.

When 'Cut' is set to 'Delay' ,'CutValue' is interpreted as the time
delay, in seconds, at which the cut is to be taken. The range of possible
time delays is determined by the length of the signal and is restricted
to [-(length(x)-1)/Fs,(length(x)-1)/Fs].

When 'Cut' is set to 'Doppler', 'CutValue' is interpreted as the
Doppler shift, in Hertz, at which the cut is to be taken. The Doppler
shift is restricted to the range [-Fs/2,Fs/2].

2-12

ambgfun

Example: 'CutValue',10.0

Data Types
double

Output
Arguments

afmag

Normalized ambiguity function magnitudes. afmag is an M-by-N
matrix where M is the number of Doppler frequencies and N is the
number of time delays.

delay

Time delay vector. delay is an N-by-1 vector of time delays. The time
delay vector consists of N = 2*length(x)-1 linearly spaced samples in
the interval (-length(x)/Fs, length(x)/Fs). The spacing between
elements is the reciprocal of the sampling frequency.

doppler

Doppler frequency vector. doppler is an M-by-1 vector of Doppler
frequencies. The Doppler frequency vector consists of linearly
spaced samples in the frequency interval [-Fs/2,Fs/2). The
spacing between elements in the Doppler frequency vector is
Fs/2^nextpow2(2*length(x)-1).

Definitions Normalized Ambiguity Function

The magnitude of the normalized ambiguity function is defined as:

| (,)| | () () |*A t f
E

x u e x u t dud
x

j f ud= −
−∞

∞
∫1 2

where Ex is the norm of the signal, x(t), t is the time delay, and fd is a
Doppler shift. The asterisk (*) denotes the complex conjugate.

The ambiguity function is a function of two variables that describes the
effects of time delays and Doppler shifts on the output of a matched
filter.

2-13

ambgfun

The magnitude of the ambiguity function at zero time delay and

Doppler shift, | (,)|,A 0 0 indicates the matched filter output when the
received waveform exhibits the time delay and Doppler shift for which
the matched filter is designed. Nonzero values of the time delay and
Doppler shift variables indicate that the received waveform exhibits
mismatches in time delay and Doppler shift from the matched filter.

The magnitude of the ambiguity function achieves maximum value
at (0,0). At this point, there is perfect correspondence between the
received waveform and the matched filter. In the normalized ambiguity
function, the maximum value equals one.

Examples Plot Ambiguity Function of Rectangular Pulse

Plot the ambiguity function magnitude of a rectangular pulse.

hrect = phased.RectangularWaveform;
x = step(hrect);
PRF = 2e4;
[afmag,delay,doppler] = ambgfun(x,hrect.SampleRate,PRF);
contour(delay,doppler,afmag);
xlabel('Delay (seconds)'); ylabel('Doppler Shift (hertz)');

2-14

ambgfun

Plot Autocorrelation Sequences of Rectangular and Linear
FM Pulses

This example shows how to plot zero-Doppler cuts of the autocorrelation
sequences of rectangular and linear FM pulses of equal duration. Note
the pulse compression exhibited in the autocorrelation sequence of the
linear FM pulse.

hrect = phased.RectangularWaveform('PRF',2e4);
hfm = phased.LinearFMWaveform('PRF',2e4);

2-15

ambgfun

xrect = step(hrect);
xfm = step(hfm);
[ambrect,delayrect] = ambgfun(xrect,hrect.SampleRate,...,

hrect.PRF,'Cut','Doppler');
[ambfm,delayfm] = ambgfun(xfm,hfm.SampleRate,...,

hfm.PRF,'Cut','Doppler');
figure;
subplot(211);
stem(delayrect,ambrect);
title('Autocorrelation of Rectangular Pulse');
subplot(212);
stem(delayfm,ambfm)
xlabel('Delay (seconds)');
title('Autocorrelation of Linear FM Pulse');

2-16

ambgfun

Plot Nonzero-Doppler Cuts of Autocorrelation Sequences

Plot nonzero-Doppler cuts of the autocorrelation sequences of
rectangular and linear FM pulses of equal duration. Both cuts are
taken at a 5 kHz Doppler shift. Besides the reduction of the peak value,
there is a strong shift in the position of the linear FM peak, evidence
of range-doppler coupling.

hrect = phased.RectangularWaveform('PRF',2e4);
hfm = phased.LinearFMWaveform('PRF',2e4);

2-17

ambgfun

xrect = step(hrect);
xfm = step(hfm);
fd = 5000;
[ambrect,delayrect] = ambgfun(xrect,hrect.SampleRate,...,

hrect.PRF,'Cut','Doppler','CutValue',fd);
[ambfm,delayfm] = ambgfun(xfm,hfm.SampleRate,...,

hfm.PRF,'Cut','Doppler','CutValue',fd);
figure;
subplot(211);
stem(delayrect*10^6,ambrect);
title('Autocorrelation of Rectangular Pulse at 5 kHz Doppler Shift');
subplot(212);
stem(delayfm*10^6,ambfm)
xlabel('Delay (\mu sec)');
title('Autocorrelation of Linear FM Pulse at 5 kHz Doppler Shift');

2-18

ambgfun

References [1] Levanon, N. and E. Mozeson. Radar Signals. Hoboken, NJ: John
Wiley & Sons, 2004.

[2] Mahafza, B. R., and A. Z. Elsherbeni. MATLAB Simulations for
Radar Systems Design. Boca Raton, FL: CRC Press, 2004.

[3] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

2-19

ambgfun

See Also phased.LinearFMWaveform | phased.MatchedFilter |
phased.RectangularWaveform | phased.SteppedFMWaveform

2-20

aperture2gain

Purpose Convert effective aperture to gain

Syntax G = aperture2gain(A,lambda)

Description G = aperture2gain(A,lambda) returns the antenna gain in decibels
corresponding to an effective aperture of A square meters for an incident
electromagnetic wave with wavelength lambda meters. A can be a
scalar or vector. If A is a vector, G is a vector of the same size as A. The
elements of G represent the gains for the corresponding elements of A.
lambda must be a scalar.

Input
Arguments

A

Antenna effective aperture in square meters. The effective aperture
describes how much energy is captured from an incident electromagnetic
plane wave. The argument describes the functional area of the
antenna and is not equivalent to the actual physical area. For a fixed
wavelength, the antenna gain is proportional to the effective aperture.
A can be a scalar or vector. If A is a vector, each element of A is the
effective aperture of a single antenna.

lambda

Wavelength of the incident electromagnetic wave. The wavelength of an
electromagnetic wave is the ratio of the wave propagation speed to the
frequency. For a fixed effective aperture, the antenna gain is inversely
proportional to the square of the wavelength. lambda must be a scalar.

Output
Arguments

G

Antenna gain in decibels. G is a scalar or a vector. If G is a vector,
each element of G is the gain corresponding to effective aperture of the
same element in A.

Definitions Gain and Effective Aperture

The relationship between the gain, G, and effective aperture of an
antenna, Ae is:

2-21

aperture2gain

G Ae= 4
2




where λ is the wavelength of the incident electromagnetic wave. The
gain expressed in decibels is:

10 10log ()G

Examples An antenna has an effective aperture of 3 square meters. Find the
antenna gain when used to capture an electromagnetic wave with a
wavelength of 10 cm.

g = aperture2gain(3,0.1);

References [1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also gain2aperture

2-22

az2broadside

Purpose Convert azimuth angle to broadside angle

Syntax BSang = az2broadside(az,el)

Description BSang = az2broadside(az,el) returns the broadside angle BSang
corresponding to the azimuth angle, az, and the elevation angle, el.
All angles are expressed in degrees and in the local coordinate system.
az and el can be either scalars or vectors. If both of them are vectors,
their dimensions must match.

Definitions Broadside Angle

The broadside angle β corresponding to an azimuth angle az and an
elevation angle el is:

  sin (sin()cos())1 az el

where –180 ≤ az ≤ 180 and –90 ≤ el ≤ 90.

Examples Broadside Angle for Scalar Inputs

Return the broadside angle corresponding to 45 degrees azimuth and
45 degrees elevation.

BSang = az2broadside(45,45);

Broadside Angles for Vector Inputs

Return broadside angles for 10 azimuth/elevation pairs. The variables
az, el, and BSang are all 10-by-1 column vectors.

az = (75:5:120)';
el = (45:5:90)';
BSang = az2broadside(az,el);

See Also broadside2az | uv2azel | phitheta2azel

2-23

azel2phitheta

Purpose Convert angles from azimuth/elevation form to phi/theta form

Syntax PhiTheta = azel2phitheta(AzEl)

Description PhiTheta = azel2phitheta(AzEl) converts the azimuth/elevation
angle pairs to their corresponding phi/theta angle pairs.

Input
Arguments

AzEl - Azimuth/elevation angle pairs
two-row matrix

Azimuth and elevation angles, specified as a two-row matrix. Each
column of the matrix represents an angle in degrees, in the form
[azimuth; elevation].

Data Types
double

Output
Arguments

PhiTheta - Phi/theta angle pairs
two-row matrix

Phi and theta angles, returned as a two-row matrix. Each column of
the matrix represents an angle in degrees, in the form [phi; theta]. The
matrix dimensions of PhiTheta are the same as those of AzEl.

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

2-24

azel2phitheta

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2-25

azel2phitheta

The coordinate transformations between φ/θ and az/el are described
by the following equations

sin() sin sin
tan() cos tan

cos cos()cos()
tan ta

el
az

el az







 
 


 nn() / sin()el az

Examples Conversion of Azimuth/Elevation Pair

Find the corresponding φ/θ representation for 30 degrees azimuth and
0 degrees elevation.

PhiTheta = azel2phitheta([30; 0]);

See Also phitheta2azel

Concepts • “Spherical Coordinates”

2-26

azel2phithetapat

Purpose Convert radiation pattern from azimuth/elevation to phi/theta form

Syntax pat_phitheta = azel2phithetapat(pat_azel,az,el)
pat_phitheta = azel2phithetapat(pat_azel,az,el,phi,theta)
[pat_phitheta,phi,theta] = azel2phithetapat(___)

Description pat_phitheta = azel2phithetapat(pat_azel,az,el) expresses the
antenna radiation pattern pat_azel in φ/θ angle coordinates instead of
azimuth/elevation angle coordinates. pat_azel samples the pattern at
azimuth angles in az and elevation angles in el. The pat_phitheta
matrix covers φ values from 0 to 180 degrees and θ values from 0 to
360 degrees. pat_phitheta is uniformly sampled with a step size of
1 for φ and θ. The function interpolates to estimate the response of
the antenna at a given direction.

pat_phitheta = azel2phithetapat(pat_azel,az,el,phi,theta)
uses vectors phi and theta to specify the grid at which to sample
pat_phitheta. To avoid interpolation errors, phi should cover the
range [0, 180], and theta should cover the range [0, 360].

[pat_phitheta,phi,theta] = azel2phithetapat(___) returns
vectors containing the φ and θ angles at which pat_phitheta samples
the pattern, using any of the input arguments in the previous syntaxes.

Input
Arguments

pat_azel - Antenna radiation pattern in azimuth/elevation form
Q-by-P matrix

Antenna radiation pattern in azimuth/elevation form, specified as a
Q-by-P matrix. pat_azel samples the 3-D magnitude pattern in
decibels, in terms of azimuth and elevation angles. P is the length of
the az vector, and Q is the length of the el vector.

Data Types
double

az - Azimuth angles

2-27

azel2phithetapat

vector of length P

Azimuth angles at which pat_azel samples the pattern, specified as
a vector of length P. Each azimuth angle is in degrees, between –180
and 180.

Data Types
double

el - Elevation angles
vector of length Q

Elevation angles at which pat_azel samples the pattern, specified as
a vector of length Q. Each elevation angle is in degrees, between –90
and 90.

Data Types
double

phi - Phi angles
[0:360] (default) | vector of length L

Phi angles at which pat_phitheta samples the pattern, specified as a
vector of length L. Each φ angle is in degrees, between 0 and 360.

Data Types
double

theta - Theta angles
[0:180] (default) | vector of length M

Theta angles at which pat_phitheta samples the pattern, specified as
a vector of length M. Each θ angle is in degrees, between 0 and 180.

Data Types
double

2-28

azel2phithetapat

Output
Arguments

pat_phitheta - Antenna radiation pattern in phi/theta form
M-by-L matrix

Antenna radiation pattern in phi/theta form, returned as an M-by-L
matrix. pat_phitheta samples the 3-D magnitude pattern in decibels,
in terms of φ and θ angles. L is the length of the phi vector, and M
is the length of the theta vector.

phi - Phi angles
vector of length L

Phi angles at which pat_phitheta samples the pattern, returned as a
vector of length L. Angles are expressed in degrees.

theta - Theta angles
vector of length M

Theta angles at which pat_phitheta samples the pattern, returned as
a vector of length M. Angles are expressed in degrees.

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is

2-29

azel2phithetapat

relative to the center of a uniform linear array, whose elements appear
as blue circles.

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2-30

azel2phithetapat

The coordinate transformations between φ/θ and az/el are described
by the following equations

sin() sin sin
tan() cos tan

cos cos()cos()
tan ta

el
az

el az







 
 


 nn() / sin()el az

Examples Conversion of Radiation Pattern

Convert a radiation pattern to φ/θ form, with the φ and θ angles spaced
1 degree apart.

Define the pattern in terms of azimuth and elevation.

az = -180:180;
el = -90:90;
pat_azel = mag2db(repmat(cosd(el)',1,numel(az)));

Convert the pattern to φ/θ space.

2-31

azel2phithetapat

pat_phitheta = azel2phithetapat(pat_azel,az,el);

Plot Converted Radiation Pattern

Plot the result of converting a radiation pattern to space with the
and angles spaced 1 degree apart.

The radiation pattern is the cosine of the elevation.

az = -180:180;
el = -90:90;
pat_azel = repmat(cosd(el)',1,numel(az));

Convert the pattern to space. Use the returned and angles for
plotting.

[pat_phitheta,phi,theta] = azel2phithetapat(pat_azel,az,el);

Plot the result.

H = surf(phi,theta,mag2db(pat_phitheta));
set(H,'LineStyle','none')
xlabel('phi (degrees)');
ylabel('theta (degrees)');
zlabel('Pattern');

2-32

azel2phithetapat

Convert Radiation Pattern For Specific Phi/Theta Values

Convert a radiation pattern to space with and angles spaced 5
degrees apart.

The radiation pattern is the cosine of the elevation.

az = -180:180;
el = -90:90;
pat_azel = repmat(cosd(el)',1,numel(az));

2-33

azel2phithetapat

Define the set of and angles at which to sample the pattern. Then,
convert the pattern.

phi = 0:5:360;
theta = 0:5:180;
pat_phitheta = azel2phithetapat(pat_azel,az,el,phi,theta);

Plot the result.

H = surf(phi,theta,mag2db(pat_phitheta));
set(H,'LineStyle','none')
xlabel('phi (degrees)');
ylabel('theta (degrees)');
zlabel('Pattern');

2-34

azel2phithetapat

See Also phased.CustomAntennaElement | phitheta2azel | azel2phitheta |
phitheta2azelpat

Concepts • “Spherical Coordinates”

2-35

azel2uv

Purpose Convert azimuth/elevation angles to u/v coordinates

Syntax UV = azel2uv(AzEl)

Description UV = azel2uv(AzEl) converts the azimuth/elevation angle pairs to
their corresponding coordinates in u/v space.

Input
Arguments

AzEl - Azimuth/elevation angle pairs
two-row matrix

Azimuth and elevation angles, specified as a two-row matrix. Each
column of the matrix represents an angle in degrees, in the form
[azimuth; elevation].

Data Types
double

Output
Arguments

UV - Angle in u/v space
two-row matrix

Angle in u/v space, returned as a two-row matrix. Each column of the
matrix represents an angle in the form [u; v]. The matrix dimensions of
UV are the same as those of AzEl.

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

2-36

azel2uv

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

2-37

azel2uv

u = cos(el) sin(az)

v = sin(el)

The values of u and v satisfy the inequalities

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v

tan(φ) = v/u

sin(θ) = sqrt(u2 + v2)

The azimuth and elevation angles can also be written in terms of u and v

sin(el) = v

tan(az) = u/sqrt(1 – u2 – v2)

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2-38

azel2uv

The coordinate transformations between φ/θ and az/el are described
by the following equations

sin() sin sin
tan() cos tan

cos cos()cos()
tan ta

el
az

el az







 
 


 nn() / sin()el az

Examples Conversion of Azimuth/Elevation Pair

Find the corresponding u/v representation for 30 degrees azimuth and
0 degrees elevation.

UV = azel2uv([30; 0]);

See Also uv2azel

Concepts • “Spherical Coordinates”

2-39

azel2uvpat

Purpose Convert radiation pattern from azimuth/elevation form to u/v form

Syntax pat_uv = azel2uvpat(pat_azel,az,el)
pat_uv = azel2uvpat(pat_azel,az,el,u,v)
[pat_uv,u,v] = azel2uvpat(___)

Description pat_uv = azel2uvpat(pat_azel,az,el) expresses the antenna
radiation pattern pat_azel in u/v space coordinates instead of
azimuth/elevation angle coordinates. pat_azel samples the pattern at
azimuth angles in az and elevation angles in el. The pat_uv matrix
uses a default grid that covers u values from –1 to 1 and v values from
–1 to 1. In this grid, pat_uv is uniformly sampled with a step size of
0.01 for u and v. The function interpolates to estimate the response of
the antenna at a given direction. Values in pat_uv are NaN for u and
v values outside the unit circle because u and v are undefined outside
the unit circle.

pat_uv = azel2uvpat(pat_azel,az,el,u,v) uses vectors u and v to
specify the grid at which to sample pat_uv. To avoid interpolation
errors, u should cover the range [–1, 1] and v should cover the range
[–1, 1].

[pat_uv,u,v] = azel2uvpat(___) returns vectors containing the u
and v coordinates at which pat_uv samples the pattern, using any of
the input arguments in the previous syntaxes.

Input
Arguments

pat_azel - Antenna radiation pattern in azimuth/elevation form
Q-by-P matrix

Antenna radiation pattern in azimuth/elevation form, specified as a
Q-by-P matrix. pat_azel samples the 3-D magnitude pattern in
decibels, in terms of azimuth and elevation angles. P is the length of
the az vector, and Q is the length of the el vector.

Data Types
double

2-40

azel2uvpat

az - Azimuth angles
vector of length P

Azimuth angles at which pat_azel samples the pattern, specified as
a vector of length P. Each azimuth angle is in degrees, between –90
and 90. Such azimuth angles are in the hemisphere for which u and v
are defined.

Data Types
double

el - Elevation angles
vector of length Q

Elevation angles at which pat_azel samples the pattern, specified as
a vector of length Q. Each elevation angle is in degrees, between –90
and 90.

Data Types
double

u - u coordinates
[-1:0.01:1] (default) | vector of length L

u coordinates at which pat_uv samples the pattern, specified as a vector
of length L. Each u coordinate is between –1 and 1.

Data Types
double

v - v coordinates
[-1:0.01:1] (default) | vector of length M

v coordinates at which pat_uv samples the pattern, specified as a vector
of length M. Each v coordinate is between –1 and 1.

Data Types
double

2-41

azel2uvpat

Output
Arguments

pat_uv - Antenna radiation pattern in u/v form
M-by-L matrix

Antenna radiation pattern in u/v form, returned as an M-by-L matrix.
pat_uv samples the 3-D magnitude pattern in decibels, in terms of u
and v coordinates. L is the length of the u vector, and M is the length of
the v vector. Values in pat_uv are NaN for u and v values outside the
unit circle because u and v are undefined outside the unit circle.

u - u coordinates
vector of length L

u coordinates at which pat_uv samples the pattern, returned as a
vector of length L.

v - v coordinates
vector of length M

v coordinates at which pat_uv samples the pattern, returned as a vector
of length M.

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is

2-42

azel2uvpat

relative to the center of a uniform linear array, whose elements appear
as blue circles.

U/V Space

The u and v coordinates are the direction cosines of a vector with
respect to the y-axis and z-axis, respectively.

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles by:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u = cos(el) sin(az)

v = sin(el)

2-43

azel2uvpat

The values of u and v satisfy the inequalities

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v

tan(φ) = v/u

sin(θ) = sqrt(u2 + v2)

The azimuth and elevation angles can also be written in terms of u and v

sin(el) = v

tan(az) = u/sqrt(1 – u2 – v2)

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2-44

azel2uvpat

The coordinate transformations between φ/θ and az/el are described
by the following equations

sin() sin sin
tan() cos tan

cos cos()cos()
tan ta

el
az

el az







 
 


 nn() / sin()el az

Examples Conversion of Radiation Pattern

Convert a radiation pattern to u/v form, with the u and v coordinates
spaced by 0.01.

Define the pattern in terms of azimuth and elevation.

az = -90:90;
el = -90:90;
pat_azel = mag2db(repmat(cosd(el)',1,numel(az)));

Convert the pattern to u/v space.

2-45

azel2uvpat

pat_uv = azel2uvpat(pat_azel,az,el);

Plot Converted Radiation Pattern

Plot the result of converting a radiation pattern to space with the
and coordinates spaced by 0.01.

The radiation pattern is the cosine of the elevation angle.

az = -90:90;
el = -90:90;
pat_azel = repmat(cosd(el)',1,numel(az));

Convert the pattern to space. Use the and coordinates for
plotting.

[pat_uv,u,v] = azel2uvpat(pat_azel,az,el);

Plot the result.

H = surf(u,v,mag2db(pat_uv));
set(H,'LineStyle','none')
xlabel('u');
ylabel('v');
zlabel('Pattern');

2-46

azel2uvpat

Convert Radiation Pattern For Specific U/V Values

Convert a radiation pattern to form, with the and coordinates
spaced by 0.05.

The radiation pattern is cosine of the elevation angle.

az = -90:90;
el = -90:90;
pat_azel = repmat(cosd(el)',1,numel(az));

2-47

azel2uvpat

Define the set of and coordinates at which to sample the pattern.
Then, convert the pattern.

u = -1:0.05:1;
v = -1:0.05:1;
pat_uv = azel2uvpat(pat_azel,az,el,u,v);

Plot the result.

H = surf(u,v,mag2db(pat_uv));
set(H,'LineStyle','none')
xlabel('u');
ylabel('v');
zlabel('Pattern');

2-48

azel2uvpat

See Also phased.CustomAntennaElement | azel2uv | uv2azel | uv2azelpat

Concepts • “Spherical Coordinates”

2-49

azelaxes

Purpose Spherical basis vectors in 3-by-3 matrix form

Syntax A = azelaxes(az,el)

Description A = azelaxes(az,el) returns a 3-by-3 matrix containing the

components of the basis (, ,)e e eR az el at each point on the unit sphere
specified by azimuth, az, and elevation, el. The columns of A contain
the components of basis vectors in the order of radial, azimuthal and
elevation directions.

Input
Arguments

az - Azimuth angle
scalar in range [–180,180]

Azimuth angle specified as a scalar in the closed range [–180,180].
Angle units are in degrees. To define the azimuth angle of a point on
a sphere, construct a vector from the origin to the point. The azimuth
angle is the angle in the xy-plane from the positive x-axis to the vector’s
orthogonal projection into the xy-plane. As examples, zero azimuth
angle and zero elevation angle specify a point on the x-axis while an
azimuth angle of 90° and an elevation angle of zero specify a point on
the y-axis.

Example: 45

Data Types
double

el - Elevation angle
scalar in range [–90,90]

Elevation angle specified as a scalar in the closed range [–90,90]. Angle
units are in degrees. To define the elevation of a point on the sphere,
construct a vector from the origin to the point. The elevation angle is
the angle from its orthogonal projection into the xy-plane to the vector
itself. As examples, zero elevation angle defines the equator of the
sphere and ±90° elevation define the north and south poles, respectively.

Example: 30

2-50

azelaxes

Data Types
double

Output
Arguments

A - Spherical basis vectors
3-by-3 matrix

Spherical basis vectors returned as a 3-by-3 matrix. The columns
contain the unit vectors in the radial, azimuthal, and elevation
directions, respectively. Symbolically we can write the matrix as

(, ,)e e eR az el

where each component represents a column vector.

Examples Spherical Basis Vectors at (45°,45°)

At the point located at 45° azimuth, 45° elevation, compute the 3-by-3
matrix containing the components of the spherical basis:

A = azelaxes(45,45)

A =

0.5000 -0.7071 -0.5000
0.5000 0.7071 -0.5000
0.7071 0 0.7071

The first column of A is the radial basis vector [0.5000; 0.5000;
0.7071]. The second and third columns are the azimuth and elevation
basis vectors, respectively.

Algorithms MATLAB computes the matrix A from the equations

A = [cosd(el)*cosd(az), -sind(az), -sind(el)*cosd(az); ...
cosd(el)*sind(az), cosd(az), -sind(el)*sind(az); ...
sind(el), 0, cosd(el)];

2-51

azelaxes

Definitions Spherical basis

The spherical basis vectors (, ,)e e eR az el at the point (az,el) can be
expressed in terms of the Cartesian unit vectors by

ˆ cos()cos() cos()sin() sin()

ˆ sin(

e i j k

e
R

az

  

 

el az el az el

a

  �

zz az

el az el az

) cos()

ˆ sin()cos() sin()sin() cos

i j

e i jel

 

 



    (()

.

el k�

This set of basis vectors can be derived from the local Cartesian basis by
two consecutive rotations: first by rotating the Cartesian vectors around
the y-axis by the negative elevation angle, -el, followed by a rotation
around the z-axis by the azimuth angle, az. Symbolically, we can write

ˆ () ()

ˆ () ()

e

e

R

az

 
















 












R az R el

R az R el

z y

z y

1
0
0

0
1
0





 
















ˆ () ()eel R az R elz y

0
0
1

The following figure shows the relationship between the spherical basis
and the local Cartesian unit vectors.

2-52

azelaxes

j

k

êaz

êRêel

i

See Also cart2sphvec | sph2cartvec

2-53

beat2range

Purpose Convert beat frequency to range

Syntax r = beat2range(fb,slope)
r = beat2range(fb,slope,c)

Description r = beat2range(fb,slope) converts the beat frequency of a dechirped
linear FMCW signal to its corresponding range. slope is the slope of
the FMCW sweep.

r = beat2range(fb,slope,c) specifies the signal propagation speed.

Input
Arguments

fb - Beat frequency of dechirped signal
M-by-1 vector | M-by-2 matrix

Beat frequency of dechirped signal, specified as an M-by-1 vector or
M-by-2 matrix in hertz. If the FMCW signal performs an upsweep or
downsweep, fb is a vector of beat frequencies.

If the FMCW signal has a triangular sweep, fb is an M-by-2 matrix in
which each row represents a pair of beat frequencies. Each row has the
form [UpSweepBeatFrequency,DownSweepBeatFrequency].

Data Types
double

slope - Sweep slope
nonzero scalar

Slope of FMCW sweep, specified as a nonzero scalar in hertz per second.
If the FMCW signal has a triangular sweep, slope is the sweep slope
of the up-sweep half. In this case, slope must be positive and the
down-sweep half is assumed to have a slope of -slope.

Data Types
double

c - Signal propagation speed
speed of light (default) | positive scalar

2-54

beat2range

Signal propagation speed, specified as a positive scalar in meters per
second.

Data Types
double

Output
Arguments

r - Range
M-by-1 column vector

Range, returned as an M-by-1 column vector in meters. Each row of r is
the range corresponding to the beat frequency in a row of fb.

Definitions Beat Frequency

For an upsweep or downsweep FMCW signal, the beat frequency is Ft –
Fr. In this expression, Ft is the transmitted signal’s carrier frequency,
and Fr is the received signal’s carrier frequency.

For an FMCW signal with triangular sweep, the upsweep and
downsweep have separate beat frequencies.

Algorithms If fb is a vector, the function computes c*fb/(2*slope).

If fb is an M-by-2 matrix with a row
[UpSweepBeatFrequency,DownSweepBeatFrequency], the
corresponding row in r is c*((UpSweepBeatFrequency -
DownSweepBeatFrequency)/2)/(2*slope).

Examples Range of Target in FMCW Radar System

Assume that the FMCW waveform sweeps a band of 3 MHz in 2 ms.
The dechirped target return has a beat frequency of 1 kHz.

slope = 30e6/(2e-3);
fb = 1e3;
r = beat2range(fb,slope);

2-55

beat2range

References
[1] Pace, Phillip. Detecting and Classifying Low Probability of Intercept
Radar. Artech House, Boston, 2009.

[2] Skolnik, M.I. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

See Also dechirp | range2beat | rdcoupling | phased.FMCWWaveform

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

2-56

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

billingsleyicm

Purpose Billingsley’s intrinsic clutter motion (ICM) model

Syntax P = billingsleyicm(fd,fc,wspeed)
P = billingsleyicm(fd,fc,wspeed,c)

Description P = billingsleyicm(fd,fc,wspeed) calculates the clutter Doppler
spectrum shape, P, due to intrinsic clutter motion (ICM) at Doppler
frequencies specified in fd. ICM arises when wind blows on vegetation
or other clutter sources. This function uses Billingsley’s model in the
calculation. fc is the operating frequency of the system. wspeed is
the wind speed.

P = billingsleyicm(fd,fc,wspeed,c) specifies the propagation
speed c in meters per second.

Input
Arguments

fd

Doppler frequencies in hertz. This value can be a scalar or a vector.

fc

Operating frequency of the system in hertz

wspeed

Wind speed in meters per second

c

Propagation speed in meters per second

Default: Speed of light

Output
Arguments

P

Shape of the clutter Doppler spectrum due to intrinsic clutter motion.
The vector size of P is the same as that of fd.

2-57

billingsleyicm

Examples Calculate and plot the Doppler spectrum shape predicted by Billingsley’s
ICM model. Assume the PRF is 2 kHz, the operating frequency is
1 GHz, and the wind speed is 5 m/s.

v = -3:0.1:3; fc = 1e9; wspeed = 5; c = 3e8;
fd = 2*v/(c/fc);
p = billingsleyicm(fd,fc,wspeed);
plot(fd,pow2db(p));
xlabel('Doppler frequency (Hz)'), ylabel('P (dB)');

2-58

billingsleyicm

References [1] Billingsley, J. Low Angle Radar Clutter. Norwich, NY: William
Andrew Publishing, 2002.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

2-59

blakechart

Purpose Range-angle-height (Blake) chart

Syntax blakechart(vcp,vcpangles)
blakechart(vcp,vcpangles,rmax,hmax)
blakechart(___ ,'Name','Value')

Description blakechart(vcp,vcpangles) creates a range-angle-height plot (also
called a Blake chart) for a narrowband radar antenna. This chart shows
the maximum radar range as a function of target elevation. In addition,
the Blake chart displays lines of constant range and lines of constant
height. The input consist of the vertical coverage pattern, vcp, and
vertical coverage pattern angles, vcpangles, produced by radarvcd.

blakechart(vcp,vcpangles,rmax,hmax), in addition, specifies the
maximum range and height of the Blake chart. You can specify range
and height units separately in the Name-Value pairs, RangeUnit and
HeightUnit. This syntax can use any of the input arguments in the
previous syntax.

blakechart(___ ,'Name','Value') allows you to specify additional
input parameters in the form of Name-Value pairs. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN). This syntax can use any of the input
arguments in the previous syntaxes.

Input
Arguments

vcp - Vertical coverage pattern
real-valued vector

Vertical coverage pattern specified as a K-by-1 column vector. The
vertical coverage pattern is the actual maximum range of the radar.
Each entry of the vertical coverage pattern corresponds to one of the
angles specified in vcpangles. Values are expressed in kilometers
unless you change the unit of measure using the 'RangeUnit'
Name-Value pair.

Example: [282.3831; 291.0502; 299.4252]

2-60

blakechart

Data Types
double

vcpangles - Vertical coverage pattern angles
real-valued vector

Vertical coverage pattern angles specified as a K-by-1 column vector.
The set of angles range from –90° to 90°.

Example: [2.1480; 2.2340; 2.3199]

Data Types
double

rmax - Maximum range of plot
real-valued scalar

Maximum range of plot specified as a real-valued scalar. Range units
are specified by the RangeUnit Name-Value pair.

Example: 200

Data Types
double

hmax - Maximum height of plot
real-valued scalar

Maximum height of plot specified as a real-valued scalar. Height units
are specified by the HeightUnit Name-Value pair.

Example: 100000

Data Types
double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

2-61

blakechart

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘RangeUnit’,’m’

’RangeUnit’ - Radar range units
'km' (default) | 'nmi' | 'mi' | 'ft' | 'm'

Range units denoting nautical miles, miles, kilometers, feet or meters.
This Name-Value pair specifies the units for the vertical coverage
pattern input argument, vcp, and the maximum range input argument,
rmax.

Example: 'mi'

Data Types
char

’HeightUnit’ - Height units
'km' (default) | 'nmi' | 'mi' | 'ft' | 'm'

Height units specified as one of 'nmi' | 'mi' | 'km' | 'ft' |'m'
denoting nautical miles, miles, kilometers, feet or meters. This
Name-Value pair specifies the units for the maximum height, hmax.

Example: 'm'

Data Types
char

’ScalePower’ - Scale power
0.25 (default) | real-valued scalar

Scale power, specified as a scalar between 0 and 1. This parameter
specifies the range and height axis scale power.

Example: 0.5

Data Types
double

’SurfaceRefractivity’ - Surface refractivity

2-62

blakechart

313 (default) | real-valued scalar

Surface refractivity, specified as a non-negative real-valued scalar. The
surface refractivity is a parameter of the “CRPL Exponential Reference
Atmosphere Model” on page 2-67 used in this function.

Example: 314

Data Types
double

’RefractionExponent’ - Refraction exponent
0.143859 (default) | real-valued scalar

Refraction exponent specified as a non-negative, real-valued scalar. The
refraction exponent is a parameter of the “CRPL Exponential Reference
Atmosphere Model” on page 2-67 used in this function.

Example: 0.15

Data Types
double

Examples Display Vertical Coverage Diagram

Display the vertical coverage diagram of an antenna transmitting at
100 MHz and placed 20 meters above the ground. Set the free-space
range to 100 km. Use default plotting parameters.

freq = 100e6;
ant_height = 20;
rng_fs = 100;
[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height);
blakechart(vcp, vcpangles);

2-63

blakechart

Display Vertical Coverage Diagram Specifying Maximum
Range and Height

Display the vertical coverage diagram of an antenna transmitting at
100 MHz and placed 20 meters above the ground. Set the free-space
range to 100 km. Set the maximum plotting range to 300 km and the
maximum plotting height to 250 km.

freq = 100e6;
ant_height = 20;

2-64

blakechart

rng_fs = 100;
[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height);
rmax = 300;
hmax = 250;
blakechart(vcp,vcpangles,rmax,hmax);

Display Vertical Coverage Diagram of Sinc Pattern Antenna

Plot the range-height-angle curve of a radar having a sinc-function
antenna pattern.

2-65

blakechart

Specify antenna pattern

Specify the antenna pattern as a sinc function.

pat_angles = linspace(-90,90,361)';
pat_u = 1.39157/sind(90/2)*sind(pat_angles);
pat = sinc(pat_u/pi);

Specify radar and environment parameters

Set the transmitting frequency to 100 MHz, the free-space range to
100 km, the antenna tilt angle to 0 degrees, and place the antenna 20
meters above the ground. Assume a surface roughness of one meter.

freq = 100e6;
ant_height = 10;
rng_fs = 100;
tilt_ang = 0;
surf_roughness = 1;

Create radar range-height-angle data

[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height,...
'RangeUnit','km','HeightUnit','m',...
'AntennaPattern',pat,...
'PatternAngles',pat_angles,'TiltAngle',tilt_ang,...
'SurfaceRoughness',surf_roughness);

Plot radar range-height-angle data

Set the maximum plotting range to 300 km and the maximum plotting
height to 250,000 m. Choose the range units as kilometers, 'km', and
the height units as meters, 'm'. Set the range and height axes scale
powers to 1/2.

rmax = 300;
hmax = 250e3;
blakechart(vcp, vcpangles, rmax, hmax, 'RangeUnit','km',...

'ScalePower',1/2,'HeightUnit','m');

2-66

blakechart

Definitions CRPL Exponential Reference Atmosphere Model

The blakechart function uses the CRPL Exponential Reference
Atmosphere to model refraction effects. The index of refraction is a
function of height

n h N es
R hexp() .    1 0 10 6

2-67

blakechart

where Ns is the atmospheric refractivity value (in units of 10
–6) at

the surface of the earth, Rexp is a decay constant, and h is the height
above the surface in kilometers. The default value of Ns is 313 and
can be modified using the 'SurfaceRefractivity' Name-Value pair.
The default value of Rexp is 0.143859 and can be modified using the
'RefractionExponent' Name-Value pair.

References
[1] Blake, L.V. Machine Plotting of Radar Vertical-Plane Coverage
Diagrams. Naval Research Laboratory Report 7098, 1970.

See Also radarvcd

2-68

broadside2az

Purpose Convert broadside angle to azimuth angle

Syntax az = broadside2az(BSang,el)

Description az = broadside2az(BSang,el) returns the azimuth angle, az,
corresponding to the broadside angle BSang and the elevation angle,
el. All angles are in degrees and in the local coordinate system. BSang
and el can be either scalars or vectors. If both of them are vectors, their
dimensions must match.

Definitions Azimuth Angle

The azimuth angle az corresponding to a broadside angle β and
elevation angle el is:

az el sin (sin()sec())1 

where –90 ≤ el ≤ 90, –90 ≤ β ≤ 90, and –180 ≤ az ≤ 180 .

Together the broadside and elevation angles must satisfy the following
inequality:

| | | |  el 90

Examples Azimuth Angle for Scalar Inputs

Return the azimuth angle corresponding to a broadside angle of 45
degrees and an elevation angle of 20 degrees.

az = broadside2az(45,20);

Azimuth Angles for Vector Inputs

Return azimuth angles for 10 pairs of broadside angle and elevation
angle. The variables BSang, el, and az are all 10-by-1 column vectors.

BSang = (45:5:90)';
el = (45:-5:0)';
az = broadside2az(BSang,el);

2-69

broadside2az

See Also az2broadside | azel2uv | azel2phitheta

2-70

cart2sphvec

Purpose Convert vector from Cartesian components to spherical representation

Syntax vs = cart2sphvec(vr,az,el)

Description vs = cart2sphvec(vr,az,el) converts the components of a vector
or set of vectors, vr, from their representation in a local Cartesian
coordinate system to a spherical basis representation contained in vs.
A spherical basis representation is the set of components of a vector

projected into a basis given by (, ,)e e eaz el R . The orientation of a
spherical basis depends upon its location on the sphere as determined
by azimuth, az, and elevation, el.

Input
Arguments

vr - Vector in Cartesian basis representation
3-by-1 column vector | 3-by-N matrix

Vector in Cartesian basis representation specified as a 3-by-1 column
vector or 3-by-N matrix. Each column of vr contains the three
components of a vector in the right-handed Cartesian basis x,y,x.

Example: [4.0; -3.5; 6.3]

Data Types
double
Complex Number Support: Yes

az - Azimuth angle
scalar in range [–180,180]

Azimuth angle specified as a scalar in the closed range [–180,180].
Angle units are in degrees. To define the azimuth angle of a point on
a sphere, construct a vector from the origin to the point. The azimuth
angle is the angle in the xy-plane from the positive x-axis to the vector’s
orthogonal projection into the xy-plane. As examples, zero azimuth
angle and zero elevation angle specify a point on the x-axis while an
azimuth angle of 90° and an elevation angle of zero specify a point on
the y-axis.

Example: 45

2-71

cart2sphvec

Data Types
double

el - Elevation angle
scalar in range [–90,90]

Elevation angle specified as a scalar in the closed range [–90,90]. Angle
units are in degrees. To define the elevation of a point on the sphere,
construct a vector from the origin to the point. The elevation angle is
the angle from its orthogonal projection into the xy-plane to the vector
itself. As examples, zero elevation angle defines the equator of the
sphere and ±90° elevation define the north and south poles, respectively.

Example: 30

Data Types
double

Output
Arguments

vs - Vector in spherical basis
3-by-1 column vector | 3-by-N matrix

Spherical representation of a vector returned as a 3-by-1 column vector
or 3-by-N matrix having the same dimensions as vs. Each column of
vs contains the three components of the vector in the right-handed

(, ,)e e eaz el R basis.

Examples Spherical Representation of Unit Z-Vector

Start with a vector in Cartesian coordinates pointing along the
z-direction and located at 45° azimuth, 45° elevation. Compute its
components with respect to the spherical basis at that point.

vr = [0;0;1];
vs = cart2sphvec(vr,45,45)

vs =

0
0.7071

2-72

cart2sphvec

0.7071

Definitions Spherical basis representation of vectors

The spherical basis is a set of three mutually orthogonal unit vectors

(, ,)e e eaz el R defined at a point on the sphere. The first unit vector
points along lines of azimuth at constant radius and elevation. The
second points along the lines of elevation at constant azimuth and
radius. Both are tangent to the surface of the sphere. The third unit
vector points radially outward.

The orientation of the basis changes from point to point on the sphere
but is independent of R so as you move out along the radius, the
basis orientation stays the same. The following figure illustrates the
orientation of the spherical basis vectors as a function of azimuth and
elevation:

2-73

cart2sphvec

az

el

x

y

z

O

R

êaz

êRêel

P

For any point on the sphere specified by az and el, the basis vectors
are given by:

ˆ sin() cos()

ˆ sin()cos() sin()sin

e i j

e i
az

el

  

  

az az

el az el

 

 (() cos()

ˆ cos()cos() cos()sin() sin

az el

el az el az

j k

e i jR

 �

 



   (()el k� .

2-74

cart2sphvec

Any vector can be written in terms of components in this basis as

v e e eaz el R  v v vaz el Rˆ ˆ ˆ . The transformations between spherical
basis components and Cartesian components take the form

v
v

v

az el az el azx

y

z


















 sin() sin()cos() cos()cos()
cos(aaz el az el az

el el
) sin()sin() cos()sin()

cos() sin()
















0

vv
v
v

az

el

R

















.

and

v
v
v

az az
el az el

az

el

R



















 

sin() cos()
sin()cos() sin()

0
ssin() cos()

cos()cos() cos()sin() sin()
az el

el az el az el

































v
v

v

x

y

z

.

See Also sph2cartvec | azelaxes

2-75

cbfweights

Purpose Conventional beamformer weights

Syntax wt = cbfweights(pos,ang)

Description wt = cbfweights(pos,ang) returns narrowband conventional
beamformer weights. When applied to the elements of a sensor array,
these weights steer the response of the array to a specified arrival
direction or set of directions. The sensor array is defined by the sensor
positions specified in the pos argument. The arrival directions are
specified by azimuth and elevation angles in the ang argument. The
output weights, wt, are returned as an N-by-M matrix. In this matrix,
N represents the number of sensors in the array while M represents the
number of arrival directions. Each column of wt contains the weights
for the corresponding direction specified in the ang. The argument wt
is equivalent to the output of the function steervec divided by N. All
elements in the sensor array are assumed to be isotropic.

Input
Arguments

pos - Positions of array sensor elements
1-by-N real-valued vector | 2-by-N real-valued matrix | 3-by-N
real-valued matrix

Positions of the elements of a sensor array specified as a 1-by-N vector,
a 2-by-N matrix, or a 3-by-N matrix. In this vector or matrix, N
represents the number of elements of the array. Each column of pos
represents the coordinates of an element. You define sensor position
units in term of signal wavelength. If pos is a 1-by-N vector, then it
represents the y-coordinate of the sensor elements of a line array. The
x and z-coordinates are assumed to be zero. If pos is a 2-by-N matrix,
then it represents the (y,z)-coordinates of the sensor elements of a
planar array which is assumed to lie in the yz-plane. The x-coordinates
are assumed to be zero. If pos is a 3-by-N matrix, then the array has
arbitrary shape.

Example: [0, 0, 0; .1, .2, .3; 0,0,0]

Data Types
double

2-76

cbfweights

ang - Beamforming directions
1-by-M real-valued vector | 2-by-M real-valued matrix

Beamforming directions specified as a 1-by-M vector or a 2-by-M
matrix. In this vector or matrix, M represents the number of incoming
signals. If ang is a 2-by-M matrix, each column specifies the direction
in azimuth and elevation of the beamforming direction as [az;el].
Angular units are specified in degrees. The azimuth angle must lie
between –180° and 180° and the elevation angle must lie between –90°
and 90°. The azimuth angle is the angle between the x-axis and the
projection of the beamforming direction vector onto the xy plane. The
angle is positive when measured from the x-axis toward the y-axis. The
elevation angle is the angle between the beamforming direction vector
and xy-plane. It is positive when measured towards the positive z axis.
If ang is a 1-by-M vector, then it represents a set of azimuth angles
with the elevation angles assumed to be zero.

Example: [45;0]

Data Types
double

Output
Arguments

wt - Beamformer weights
N-by-M complex-valued matrix

Beamformer weights returned as a N-by-M complex-valued matrix.
In this matrix, N represents the number of sensor elements of the
array while M represents the number of beamforming directions. Each
column of wt corresponds to a beamforming direction specified in ang.

Examples Weights for Two Beamformer Directions

Specify a line array of five elements spaced 10 cm apart. Compute the
weights for two directions: 30° azimuth, 0° elevation, and 45° azimuth,
0° elevation. Assume a plane wave having a frequency of 1 GHz.

elementPos = (0:.1:.4); % meters
c = physconst('LightSpeed'); % speed of light;
fc = 1e9; % frequency

2-77

cbfweights

lam = c/fc; % wavelength
ang = [30 45]; % beamforming direction
wt = cbfweights(elementPos/lam,ang) % weights

wt =

0.2000 + 0.0000i 0.2000 + 0.0000i
0.0999 + 0.1733i 0.0177 + 0.1992i

-0.1003 + 0.1731i -0.1969 + 0.0353i
-0.2000 - 0.0004i -0.0527 - 0.1929i
-0.0995 - 0.1735i 0.1875 - 0.0696i

References
[1] Van Trees, H.L. Optimum Array Processing. New York, NY:
Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile
approach to spatial filtering”. IEEE ASSP Magazine, Vol. 5 No. 2 pp.
4–24.

See Also lcmvweights | mvdrweights | sensorcov | steervec |
phased.PhaseShiftBeamformer

2-78

circpol2pol

Purpose Convert circular component representation of field to linear component
representation

Syntax fv = circpol2pol(cfv)

Description fv = circpol2pol(cfv) converts the circular polarization components
of the field or fields contained in cfv to their linear polarization
components contained in fv. Any polarized field can be expressed as a
linear combination of horizontal and vertical components.

Input
Arguments

cfv - Field vector in circular polarization representation
1-by-N complex-valued row vector or 2-by-N complex-valued matrix

Field vector in its circular polarization representation specified as a
1-by-N complex row vector or a 2-by-N complex matrix. If cfv is a
matrix, each column represents a field in the form of [El;Er], where
El and Er are the left and right circular polarization components of
the field. If cfv is a row vector, each column in cfv represents the
polarization ratio, Er/El. For a row vector, the value Inf can designate
the case when the ratio is computed for El = 0.

Example: [1;-1]

Data Types
double
Complex Number Support: Yes

Output
Arguments

fv - Field vector in linear polarization representation or Jones
vector
1-by-N complex-valued row vector or 2-by-N complex-valued matrix

Field vector in linear polarization representation or Jones vector
returned as a 1-by-N complex-valued row vector or 2-by-N
complex-valued matrix. fv has the same dimensions as cfv. If cfv is a
matrix, each column of fv contains the horizontal and vertical linear
polarization components of the field in the form, [Eh;Ev]. If cfv is
a row vector, each entry in fv contains the linear polarization ratio,
defined as Ev/Eh.

2-79

circpol2pol

Examples Linear Polarization Components from Circular Polarization
Components

Convert a horizontally polarized field, originally expressed in circular
polarization components, into linear polarization components.

cfv = [1;1];
fv = circpol2pol(cfv)

fv =

1.4142
0

The vertical component of the output is zero for horizontally polarized
fields.

Linear Polarization Ratio from Circular Polarization Ratio

Create a right circularly polarized field. Compute the circular
polarization ratio and convert to the linear polarization ratio equivalent.
Note that the input circular polarization ratio is Inf.

cfv = [0;1];
q = cfv(2)/cfv(1);
p = circpol2pol(q)

p =

0 - 1.0000i

References
[1] Mott, H., Antennas for Radar and Communications, John Wiley &
Sons, 1992.

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley
& Sons, 1998, pp. 299–302

2-80

circpol2pol

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge:
Cambridge University Press, 1999, pp 25–32.

See Also pol2circpol | polellip | polratio | stokes

2-81

dechirp

Purpose Perform dechirp operation on FMCW signal

Syntax y = dechirp(x,xref)

Description y = dechirp(x,xref) mixes the incoming signal, x, with the reference
signal, xref. The signals can be complex baseband signals. In
an FMCW radar system, x is the received signal and xref is the
transmitted signal.

Input
Arguments

x - Incoming signal
M-by-N matrix

Incoming signal, specified as an M-by-N matrix. Each column of x is an
independent signal and is individually mixed with xref.

Data Types
double
Complex Number Support: Yes

xref - Reference signal
M-by-1 vector

Reference signal, specified as an M-by-1 vector.

Data Types
double
Complex Number Support: Yes

Output
Arguments

y - Dechirped signal
M-by-N matrix

Dechirped signal, returned as an M-by-N matrix. Each column is the
mixer output for the corresponding column of x.

Examples Dechirp FMCW Signal

Dechirp a delayed FMCW signal, and plot the spectrum before and
after dechirping.

2-82

dechirp

Create an FMCW signal.

Fs = 2e5; Tm = 0.001;
hwav = phased.FMCWWaveform('SampleRate',Fs,'SweepTime',Tm);
xref = step(hwav);

Dechirp a delayed copy of the signal.

x = [zeros(10,1); xref(1:end-10)];
y = dechirp(x,xref);

Plot the spectrum before dechirping.

[Pxx,F] = periodogram(x,[],1024,Fs,'centered');
plot(F/1000,10*log10(Pxx)); grid;
xlabel('Frequency (kHz)');
ylabel('Power/Frequency (dB/Hz)');
title('Periodogram Power Spectral Density Estimate Before Dechirping')

2-83

dechirp

Plot the spectrum after dechirping.

[Pyy,F] = periodogram(y,[],1024,Fs,'centered');
plot(F/1000,10*log10(Pyy));
xlabel('Frequency (kHz)');
ylabel('Power/Frequency (dB/Hz)');
ylim([-100 -30]); grid
title('Periodogram Power Spectral Density Estimate After Dechirping');

2-84

dechirp

Algorithms For column vectors x and xref, the mix operation is defined as xref
.* conj(x).

If x has multiple columns, the mix operation applies the preceding
expression to each column of x independently.

The mix operation negates the Doppler shift embedded in x, because of
the order of xref and x.

2-85

dechirp

The mixing order affects the sign of the imaginary part of y. There is
no consistent convention in the literature about the mixing order. This
function and the beat2range function use the same convention. If your
program processes the output of dechirp in other ways, take the mixing
order into account.

References
[1] Pace, Phillip. Detecting and Classifying Low Probability of Intercept
Radar. Boston: Artech House, 2009.

[2] Skolnik, M.I. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

See Also beat2range | phased.RangeDopplerResponse

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

2-86

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

delayseq

Purpose Delay or advance sequence

Syntax shifted_data = delayseq(data,DELAY)
shifted_data = delayseq(data,DELAY,Fs)

Description shifted_data = delayseq(data,DELAY) delays or advances the input
data by DELAY samples. Negative values of DELAY advance data, while
positive values delay data. Noninteger values of DELAY represent
fractional delays or advances. In this case, the function interpolates.
How the delayseq function operates on the columns of data depends on
the dimensions of data and DELAY:

• If DELAY is a scalar, the function applies that shift to each column
of data.

• If DELAY is a vector whose length equals the number of columns of
data, the function shifts each column by the corresponding vector
entry.

• If DELAY is a vector and data has one column, the function shifts
data by each entry in DELAY independently. The number of columns
in shifted_data is the vector length of DELAY. The kth column of
shifted_data is the result of shifting data by DELAY(k).

shifted_data = delayseq(data,DELAY,Fs) specifies DELAY in
seconds. Fs is the sampling frequency of data. If DELAY is not divisible
by the reciprocal of the sampling frequency, delayseq interpolates to
implement a fractional delay or advance of data.

Input
Arguments

data

Vector or matrix of real or complex data.

DELAY

Amount by which to delay or advance the input. If you specify the
optional Fs argument, DELAY is in seconds; otherwise, DELAY is in
samples.

2-87

delayseq

Fs

Sampling frequency of the data in hertz. If you specify this argument,
the function assumes DELAY is in seconds.

Default: 1

Output
Arguments

shifted_data

Result of delaying or advancing the data. shifted_data has the same
number of rows as data, with appropriate truncations or zero padding.

Examples Implement integer delay of input sequence in seconds.

Fs = 1e4;
t = 0:1/Fs:0.005;
data = cos(2*pi*1000*t)'; % data is a column vector
% Delay input by 0.5 milliseconds (5 samples)
shifted_data = delayseq(data,0.0005,Fs);
subplot(211);
plot(t.*1000,data); title('Input');
subplot(212);
plot(t.*1000,shifted_data); title('0.5-millisecond delay');
xlabel('milliseconds');

2-88

delayseq

Implement fractional delay of input sequence in seconds.

Fs = 1e4;
t = 0:1/Fs:0.005;
data = cos(2*pi*1000*t)'; % data is a column vector
% Delay input by 0.75 milliseconds (7.5 samples)
shifted_data = delayseq(data,0.00075,Fs);
figure;
subplot(211);
plot(t.*1000,data); title('Input');
subplot(212);
plot(t.*1000,shifted_data);
title('0.75-millisecond (fractional) delay');
axis([0 5 -1.1 1.1]); xlabel('milliseconds');

2-89

delayseq

Note that the values of the shifted sequence differ from the input
because of the interpolation resulting from the fractional delay.

See Also phased.TimeDelayBeamformer

2-90

depressionang

Purpose Depression angle of surface target

Syntax depAng = depressionang(H,R)
depAng = depressionang(H,R,MODEL)
depAng = depressionang(H,R,MODEL,Re)

Description depAng = depressionang(H,R) returns the depression angle from the
horizontal at an altitude of H meters to surface targets. The sensor
is H meters above the surface. R is the range from the sensor to the
surface targets. The computation assumes a curved earth model with
an effective earth radius of approximately 4/3 times the actual earth
radius.

depAng = depressionang(H,R,MODEL) specifies the earth model used
to compute the depression angle. MODEL is either 'Flat' or 'Curved'.

depAng = depressionang(H,R,MODEL,Re) specifies the effective earth
radius. Effective earth radius applies to a curved earth model. When
MODEL is 'Flat', the function ignores Re.

Input
Arguments

H

Height of the sensor above the surface, in meters. This argument can
be a scalar or a vector. If both H and R are nonscalar, they must have
the same dimensions.

R

Distance in meters from the sensor to the surface target. This argument
can be a scalar or a vector. If both H and R are nonscalar, they must
have the same dimensions. R must be between H and the horizon range
determined by H.

MODEL

Earth model, as one of | 'Curved' | 'Flat' |.

Default: 'Curved'

2-91

depressionang

Re

Effective earth radius in meters. This argument requires a positive
scalar value.

Default: effearthradius, which is approximately 4/3 times the
actual earth radius

Output
Arguments

depAng

Depression angle, in degrees, from the horizontal at the sensor altitude
toward surface targets R meters from the sensor. The dimensions of
depAng are the larger of size(H) and size(R).

Definitions Depression Angle

The depression angle is the angle between a horizontal line containing
the sensor and the line from the sensor to a surface target.

H

Sensor

Target

R

Depression
angle

Earth

For the curved earth model with an effective earth radius of Re, the
depression angle is:

sin
()

  














1
2 22
2

H HR R
R H R

e

e

For the flat earth model, the depression angle is:

2-92

depressionang

sin 







1 H
R

Examples Calculate the depression angle for a ground clutter patch that is 1000 m
away from the sensor. The sensor is located on a platform that is 300 m
above the ground.

depang = depressionang(300,1000);

References [1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also grazingang | horizonrange

2-93

dop2speed

Purpose Convert Doppler shift to speed

Syntax radvel = dop2speed(Doppler_shift,wavelength)

Description radvel = dop2speed(Doppler_shift,wavelength) returns the radial
velocity in meters per second. This value corresponds to the one-way
Doppler shift, Doppler_shift, for the wavelength wavelength in
meters.

Definitions The following equation defines the speed of a source relative to a
receiver based on the one-way Doppler shift:

V fs r, = Δ 

where Vs,r denotes the radial velocity of the source relative to the
receiver, Δf, is the Doppler shift in hertz, and λ is the carrier frequency
wavelength in meters.

Examples Calculate the speed of an automobile for continuous-wave radar based
on the Doppler shift.

f0=24.15e9; % 24.15 GHz carrier
lambda=physconst('LightSpeed')/f0; % wavelength
% Assume Doppler shift of 2880 Hz
radvel = dop2speed(2880,lambda);
% Roughly 35.75 meters per second (80 miles/hour)

References [1] Rappaport, T. Wireless Communications: Principles & Practices.
Upper Saddle River, NJ: Prentice Hall, 1996.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also dopsteeringvec | speed2dop

2-94

dopsteeringvec

Purpose Doppler steering vector

Syntax DSTV = dopsteeringvec(dopplerfreq,numpulses)
DSTV = dopsteeringvec(dopplerfreq,numpulses,PRF)

Description DSTV = dopsteeringvec(dopplerfreq,numpulses) returns the
N-by-1 temporal (time-domain) Doppler steering vector for a target at
a normalized Doppler frequency of dopplerfreq in hertz. The pulse
repetition frequency is assumed to be 1 Hz.

DSTV = dopsteeringvec(dopplerfreq,numpulses,PRF) specifies the
pulse repetition frequency, PRF.

Input
Arguments

dopplerfreq

The Doppler frequency in hertz. The normalized Doppler frequency is
the Doppler frequency divided by the pulse repetition frequency.

numpulses

The number of pulses. The time-domain Doppler steering vector consists
of numpulses samples taken at intervals of 1/PRF (slow-time samples).

PRF

Pulse repetition frequency in hertz. The time-domain Doppler steering
vector consists of numpulses samples taken at intervals of 1/PRF
(slow-time samples). The normalized Doppler frequency is the Doppler
frequency divided by the pulse repetition frequency.

Output
Arguments

DSTV

Temporal (time-domain) Doppler steering vector. DSTV is an N-by-1
column vector where N is the number of pulses, numpulses.

Definitions Temporal Doppler Steering Vector

The temporal (time-domain) steering vector corresponding to a point
scatterer is:

2-95

dopsteeringvec

e j f T nd p2

where n=0,1,2, ..., N-1 are slow-time samples (one sample from each
pulse), fd is the Doppler frequency, and Tp is the pulse repetition
interval. The product of the Doppler frequency and the pulse repetition
interval is the normalized Doppler frequency.

Examples Calculate the steering vector corresponding to a Doppler frequency of
200 Hz, assuming there are 10 pulses and the PRF is 1 kHz.

dstv = dopsteeringvec(200,10,1000);

References [1] Melvin, W. L. “A STAP Overview,” IEEE Aerospace and Electronic
Systems Magazine, Vol. 19, Number 1, 2004, pp. 19–35.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also dop2speed | speed2dop

2-96

effearthradius

Purpose Effective earth radius

Syntax Re = effearthradius
Re = effearthradius(RGradient)

Description Re = effearthradius returns the effective radius of spherical earth
in meters. The calculation uses a refractivity gradient of -39e-9. As a
result, Re is approximately 4/3 of the actual earth radius.

Re = effearthradius(RGradient) specifies the refractivity gradient.

Input
Arguments

RGradient

Refractivity gradient in units of 1/meter. This value must be a
nonpositive scalar.

Default: -39e-9

Output
Arguments

Re

Effective earth radius in meters.

Definitions Effective Earth Radius

The effective earth radius is a scaling of the actual earth radius. The
scale factor is:

1
1  r RGradient

where r is the actual earth radius in meters and RGradient is the
refractivity gradient. The refractivity gradient, which depends on the
altitude, is the rate of change of refraction index with altitude. The
refraction index for a given altitude is the ratio between the free-space
propagation speed and the propagation speed in the air band at that
altitude.

2-97

effearthradius

The most commonly used scale factor is 4/3. This value corresponds to a

refractivity gradient of    39 10 9 1 m .

References [1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also depressionang | horizonrange

2-98

espritdoa

Purpose Direction of arrival using TLS ESPRIT

Syntax ang = espritdoa(R,nsig)
ang = espritdoa(___ ,Name,Value)

Description ang = espritdoa(R,nsig) estimates the directions of arrival, ang,
of a set of plane waves received on a uniform line array (ULA). The
estimation employs the TLS ESPRIT, the total least-squares ESPRIT,
algorithm. The input arguments are the estimated spatial covariance
matrix between sensor elements, R, and the number of arriving signals,
nsig. In this syntax, sensor elements are spaced one-half wavelength
apart.

ang = espritdoa(___ ,Name,Value) estimates the directions of arrival
with additional options specified by one or more Name,Value pair
arguments. This syntax can use any of the input arguments in the
previous syntax.

Input
Arguments

R - Spatial covariance matrix
Complex-valued positive-definite N-by-N matrix.

Spatial covariance matrix, specified as a complex-valued,
positive-definite, N-by-N matrix. In this matrix, N represents the
number of elements in the ULA array. If R is not Hermitian, a
Hermitian matrix is formed by averaging the matrix and its conjugate
transpose, (R+R')/2.

Example: [4.3162, –0.2777 – 0.2337i; –0.2777 + 0.2337i , 4.3162]

Data Types
double
Complex Number Support: Yes

nsig - Number of arriving signals
Positive integer

Number of arriving signals, specified as a positive integer.

2-99

espritdoa

Example: 3

Data Types
double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘ElementSpacing’, 0.45

’ElementSpacing’ - ULA element spacing
0.5 (default) | Real-valued positive scalar

ULA element spacing, specified as a real-valued, positive scalar.
Position units are measured in terms of signal wavelength.

Example: 0.4

Data Types
double

’RowWeighting’ - Row weights
1 (default) | Real-valued positive scalar

Row weights specified as a real-valued positive scalar. These weights
are applied to the selection matrices which determine the ESPRIT
subarrays. A larger value is generally better but the value must be less
than or equal to (Ns–1)/2, where Ns is the number of subarray elements.
The number of subarray elements is Ns = N–1. The value of N is the
number of ULA elements, as specified by the dimensions of the spatial
covariance matrix, R. A detailed discussion of selection matrices and
row weighting can be found in Van Trees [1], p. 1178.

Example: 5

Data Types
double

2-100

espritdoa

Output
Arguments

ang - Directions of arrival angles
Real-valued 1-by-M row vector

Directions of arrival angle returned as a real-valued, 1-by-M vector.
The dimension M is the number of arriving signals specified in the
argument, nsig. This angle is the broadside angle. Angle units are
degrees and angle values lie between –90° and 90°.

Examples Three Signals Arriving at Half-Wavelength-Spaced ULA

Assume a half-wavelength spaced uniform line array with 10 elements.
Three plane waves arrive from the 0°, –25°, and 30° azimuth directions.
Elevation angles are 0°. The noise is spatially and temporally white.
The SNR for each signal is 5 dB. Find the arrival angles.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
angles = [0 -25 30];
Nsig = 3;
R = sensorcov(elementPos,angles,db2pow(-5));
doa = espritdoa(R,Nsig)

doa =

30.0000 0.0000 -25.0000

The espritdoa functions produces the correct angles.

Three Signals Arriving at 0.4-Wavelength-Spaced ULA

Assume a uniform line array with 10 element. The element spacing is
smaller than one-half wavelength. Three plane waves arrive from the
0°, –25°, and 30° azimuth directions. Elevation angles are 0°. The noise
is spatially and temporally white. The SNR for each signal is 5 dB.

Set the ElementSpacing property value to the interelement spacing.
Find the arrival angles.

N = 10;

2-101

espritdoa

d = 0.4;
elementPos = (0:N-1)*d;
angles = [0 -25 30];
Nsig = 3;
R = sensorcov(elementPos,angles,db2pow(-5));
doa = espritdoa(R,Nsig,'ElementSpacing',d)

doa =

30.0000 0.0000 -25.0000

The espritdoa functions again produces the correct angles.

References
[1] Van Trees, H.L. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also aictest | mdltest | rootmusicdoa | spsmooth |
phased.ESPRITEstimator

2-102

fspl

Purpose Free space path loss

Syntax L = fspl(R,lambda)

Description L = fspl(R,lambda) returns the free space path loss in decibels for a
waveform with wavelength lambda propagated over a distance of R
meters. The minimum value of L is 0, indicating no path loss.

Input
Arguments

R

Propagation distance in meters

lambda

Wavelength in meters. The wavelength in meters is the speed of
propagation divided by the frequency in hertz.

Output
Arguments

L

Path loss in decibels. L is a nonnegative number. The minimum value
of L is 0, indicating no path loss.

Definitions Free Space Path Loss

The free space path loss, L, in decibels is:

L
R= 20

4
10log ()




Examples Calculate free space path loss in decibels incurred by a 10 gigahertz
wave over a distance of 10 kilometers.

lambda = physconst('LightSpeed')/10e9;
R = 10e3;
L = fspl(R,lambda);

References [1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

2-103

fspl

See Also phased.FreeSpace

2-104

gain2aperture

Purpose Convert gain to effective aperture

Syntax A = gain2aperture(G,lambda)

Description A = gain2aperture(G,lambda) returns the effective aperture in
square meters corresponding to a gain of G decibels for an incident
electromagnetic wave with wavelength lambda meters. G can be a
scalar or vector. If G is a vector, A is a vector of the same size as G. The
elements of A represent the effective apertures for the corresponding
elements of G. lambda must be a scalar.

Input
Arguments

G

Antenna gain in decibels. G is a scalar or a vector. If G is a vector, each
element of G is the gain in decibels of a single antenna.

lambda

Wavelength of the incident electromagnetic wave. The wavelength of an
electromagnetic wave is the ratio of the wave propagation speed to the
frequency. For a fixed effective aperture, the antenna gain is inversely
proportional to the square of the wavelength. lambda must be a scalar.

Output
Arguments

A

Antenna effective aperture in square meters. The effective aperture
describes how much energy is captured from an incident electromagnetic
plane wave. The argument describes the functional area of the
antenna and is not equivalent to the actual physical area. For a fixed
wavelength, the antenna gain is proportional to the effective aperture.
A can be a scalar or vector. If A is a vector, each element of A is the
effective aperture of the corresponding gain in G.

Definitions Gain and Effective Aperture

The relationship between the gain, G, in decibels of an antenna and
the antenna’s effective aperture is:

2-105

gain2aperture

Ae
G= 10

4
10

2
/ 



where λ is the wavelength of the incident electromagnetic wave.

Examples An antenna has a gain of 3 dB. Calculate the antenna’s effective
aperture when used to capture an electromagnetic wave with a
wavelength of 10 cm.

a = gain2aperture(3,0.1);

References [1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also aperture2gain

2-106

global2localcoord

Purpose Convert global to local coordinates

Syntax lclCoord = global2localcoord(gCoord, OPTION)
gCoord = global2localcoord(___ ,localOrigin)
gCoord = global2localcoord(___ ,localAxes)

Description lclCoord = global2localcoord(gCoord, OPTION) returns the
local coordinate lclCoord corresponding to the global coordinate
gCoord. OPTION determines the type of global-to-local coordinate
transformation.

gCoord = global2localcoord(___ ,localOrigin) specifies the origin
of the local coordinate system.

gCoord = global2localcoord(___ ,localAxes) specifies the axes of
the local coordinate system.

Input
Arguments

gCoord

Global coordinates in rectangular or spherical coordinate form. gCoord
is a 3-by-1 vector or 3-by-N matrix. Each column represents a global
coordinate.

If the coordinates are in rectangular form, the column represents
(X,Y,Z) in meters.

If the coordinates are in spherical form, the column represents (az,el,r).
az is the azimuth angle in degrees, el is the elevation angle in degrees,
and r is the radius in meters.

The origin of the global coordinate system is at [0; 0; 0]. That system’s
axes are the standard unit basis vectors in three-dimensional space, [1;
0; 0], [0; 1; 0], and [0; 0; 1].

OPTION

Type of coordinate transformation. Valid strings are in the next table.

2-107

global2localcoord

OPTION Transformation

'rr' Global rectangular to local
rectangular

'rs' Global rectangular to local
spherical

'sr' Global spherical to local
rectangular

'ss' Global spherical to local spherical

localOrigin

Origin of local coordinate system. localOrigin is a 3-by-1 column
vector containing the rectangular coordinate of the local coordinate
system origin with respect to the global coordinate system.

Default: [0; 0; 0]

localAxes

Axes of local coordinate system. localAxes is a 3-by-3 matrix with the
columns specifying the local X, Y, and Z axes in rectangular form with
respect to the global coordinate system.

Default: [1 0 0;0 1 0;0 0 1]

Output
Arguments

lclCoord

Local coordinates in rectangular or spherical coordinate form.

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is

2-108

global2localcoord

between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Examples Convert between global and local coordinates in rectangular form.

lclCoord = global2localcoord([0; 1; 0], ...
'rr',[1; 1; 1]);
% Local origin is at [1; 1; 1]
% lclCoord = [0; 1; 0]-[1; 1; 1];

2-109

global2localcoord

Convert global spherical coordinate to local rectangular coordinate.

lclCoord = global2localcoord([45; 45; 50],'sr',[50; 50; 50]);
% 45 degree azimuth, 45 degree elevation, 50 meter radius

References [1] Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics: Principles and Practice in C, 2nd Ed. Reading, MA:
Addison-Wesley, 1995.

See Also local2globalcoord | uv2azel | phitheta2azel | azel2uv |
azel2phitheta

Concepts • “Global and Local Coordinate Systems”

2-110

grazingang

Purpose Grazing angle of surface target

Syntax grazAng = grazingang(H,R)
grazAng = grazingang(H,R,MODEL)
grazAng = grazingang(H,R,MODEL,Re)

Description grazAng = grazingang(H,R) returns the grazing angle for a sensor
H meters above the surface, to surface targets R meters away. The
computation assumes a curved earth model with an effective earth
radius of approximately 4/3 times the actual earth radius.

grazAng = grazingang(H,R,MODEL) specifies the earth model used to
compute the grazing angle. MODEL is either 'Flat' or 'Curved'.

grazAng = grazingang(H,R,MODEL,Re) specifies the effective earth
radius. Effective earth radius applies to a curved earth model. When
MODEL is 'Flat', the function ignores Re.

Input
Arguments

H

Height of the sensor above the surface, in meters. This argument can
be a scalar or a vector. If both H and R are nonscalar, they must have
the same dimensions.

R

Distance in meters from the sensor to the surface target. This argument
can be a scalar or a vector. If both H and R are nonscalar, they must
have the same dimensions. R must be between H and the horizon range
determined by H.

MODEL

Earth model, as one of | 'Curved' | 'Flat' |.

Default: 'Curved'

Re

2-111

grazingang

Effective earth radius in meters. This argument requires a positive
scalar value.

Default: effearthradius, which is approximately 4/3 times the
actual earth radius

Output
Arguments

grazAng

Grazing angle, in degrees. The size of grazAng is the larger of size(H)
and size(R).

Definitions Grazing Angle

The grazing angle is the angle between a line from the sensor to a
surface target, and a tangent to the earth at the site of that target.

H

Sensor

Target

R
Grazing
angleEarth

For the curved earth model with an effective earth radius of Re, the
grazing angle is:

sin  











1
2 22

2
H HR R

RR
e

e

For the flat earth model, the grazing angle is:

2-112

grazingang

sin 







1 H
R

Examples Determine the grazing angle of a ground target located 1000 m away
from the sensor. The sensor is mounted on a platform that is 300 m
above the ground.

grazAng = grazingang(300,1000);

References [1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also depressionang | horizonrange

2-113

horizonrange

Purpose Horizon range

Syntax Rh = horizonrange(H)
Rh = horizonrange(H,Re)

Description Rh = horizonrange(H) returns the horizon range of a radar system
H meters above the surface. The computation uses an effective earth
radius of approximately 4/3 times the actual earth radius.

Rh = horizonrange(H,Re) specifies the effective earth radius.

Input
Arguments

H

Height of radar system above surface, in meters. This argument can be
a scalar or a vector.

Re

Effective earth radius in meters. This argument must be a positive
scalar.

Default: effearthradius, which is approximately 4/3 times the
actual earth radius

Output
Arguments

Rh

Horizon range in meters of radar system at altitude H.

Definitions Horizon Range

The horizon range of a radar system is the distance from the radar
system to the earth along a tangent. Beyond the horizon range, the
radar system detects no return from the surface through a direct path.

2-114

horizonrange

H
Radar

Rh

Earth

Re

The value of the horizon range is:

2 2R H He 

where Re is the effective earth radius and H is the altitude of the radar
system.

Examples Determine the horizon range of an antenna that is 30 m high.

Rh = horizonrange(30);

References [1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also depressionang | effearthradius | grazingang

2-115

lcmvweights

Purpose Narrowband linearly constrained minimum variance (LCMV)
beamformer weights

Syntax wt = lcmvweights(constr,resp,cov)

Description wt = lcmvweights(constr,resp,cov) returns narrowband
linearly-constrained minimum variance (LCMV) beamformer weights,
wt, for a phased array. When applied to the elements of the array,
these weights steer the response of the array toward a specific arrival
direction or set of directions. LCMV beamforming requires that
the beamformer response to signals from a direction of interest are
passed with specified gain and phase delay. However, power from
interfering signals and noise from all other directions is minimized.
Additional constraints may be imposed to specifically nullify output
power coming from known directions. The constraints are contained in
the matrix, constr. Each column of constr represents a separate
constraint vector. The desired response to each constraint is contained
in the response vector, resp. The argument cov is the sensor spatial
covariance matrix. All elements in the sensor array are assumed to
be isotropic.

Input
Arguments

constr - Constraint matrix
N-by-K complex-valued matrix

Constraint matrix specified as a complex-valued, N-by-K,
complex-valued matrix. In this matrix N represents the number
of elements in the sensor array while K represents the number of
constraints. Each column of the matrix specifies a constraint on the
beamformer weights. The number of K must be less than or equal to N.

Example: [0, 0, 0; .1, .2, .3; 0,0,0]

Data Types
double
Complex Number Support: Yes

resp - Desired response
K-by-1 complex-valued column vector.

2-116

lcmvweights

Desired response specified as complex-valued, K-by-1 column vector
where K is the number of constraints. The value of each element in
the vector is the desired response to the constraint specified in the
corresponding column of constr.

Example: [45;0]

Data Types
double
Complex Number Support: Yes

cov - Sensor spatial covariance matrix
N-by-N complex-valued matrix

Sensor spatial covariance matrix specified as a complex-valued, N-by-N
matrix. In this matrix, N represents the number of sensor elements.
The covariance matrix consists of the variances of the element data
and the covariance between sensor elements. It contains contributions
from all incoming signals and noise.

Example: [45;0]

Data Types
double
Complex Number Support: Yes

Output
Arguments

wt - Beamformer weights
N-by-1 complex-valued vector

Beamformer weights returned as an N-by-1, complex-valued vector. In
this vector, N represents the number of elements in the array.

Examples LCMV Beamformer with Nulls at -40 and 20 degrees

Construct a 10-element half-wavelength-spaced line array. Then,
compute the LCMV weights for a desired arrival direction of 0 degrees
azimuth. Impose three direction constraints : a null at -40 degrees, a
unit desired response in the arrival direction 0 degrees, and another null
at 20 degrees. The sensor spatial covariance matrix includes two signals
arriving from -60 and 60 degrees and -10 dB isotropic white noise.

2-117

lcmvweights

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
sv = steervec(elementPos,[-40 0 20]);
resp = [0 1 0]';
Sn = sensorcov(elementPos,[-60 60],db2pow(-10));

Compute the beamformer weights.

w = lcmvweights(sv,resp,Sn);

Plot the array pattern for the computed weights.

vv = steervec(elementPos,[-90:90]);
plot([-90:90],mag2db(abs(w'*vv)))
grid on
axis([-90,90,-50,10]);
xlabel('Azimuth Angle (degrees)');
ylabel('Normalized Power (dB)');
title('LCMV Array Pattern');

2-118

lcmvweights

The above figure shows that maximum gain is attained at 0 degrees
as expected. In addition, the constraints impose nulls at -40 and 20
degrees and these can be seen in the plot. The nulls at -60 and 60
degrees arise from the fundamental property of the LCMV beamformer
of suppressing the power contained in the two plane waves that
contributed to the sensor spatial covariance matrix.

2-119

lcmvweights

Definitions Linear-Constrained Minimum Variance Beamformers

The LCMV beamformer computes weights that minimize the total
output power of an array but that are subject to some constraints
(see Van Trees [1], p. 527). In order to steer the response of the
array to a particular arrival direction, weights are chosen to produce
unit gain when applied to the steering vector for that direction.
This requirement can be thought of as a constraint on the weights.
Additional constraints may be applied to nullify the array response to
signals from other arrival directions such as those containing noise
sources. Let (az1,el1),(az2,el2),...,(azK,elK) be the set of directions for
which a constraint is to be imposed. Each direction has a corresponding

steering vector, ck , and the response of the array to that steering vector

is given by c wk
H . The transpose conjugate of a vector is denoted by the

superscript symbol H. A constraint is imposed when a desired response

is required when the beamformer weights act on a steering vector, ck ,

c wk
H

kr

This response could be specified as unity to allow the array to pass
through the signal from a certain direction. It could be zero to nullify the
response from that direction. All the constraints can be collected into a

single matrix, C, and all the response into a single column vector, R .
This allows the constraints to be represented together in matrix form

CH w R
The LCMV beamformer chooses weights to minimize the total output
power

P SH w w
subject to the above constraints. S denotes the sensor spatial covariance
matrix. The solution to the power minimization is

w R    
S C CS CH H1 1 1

2-120

lcmvweights

and its derivation can be found in [2].

References
[1] Van Trees, H.L. Optimum Array Processing. New York, NY:
Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile
approach to spatial filtering”. IEEE ASSP Magazine, Vol. 5 No. 2 pp.
4–24.

See Also cbfweights | mvdrweights | sensorcov | steervec |
phased.LCMVBeamformer

2-121

local2globalcoord

Purpose Convert local to global coordinates

Syntax gCoord = local2globalcoord(lclCoord,OPTION)
gCoord = local2globalcoord(___ ,localOrigin)
gCoord = local2globalcoord(___ ,localAxes)

Description gCoord = local2globalcoord(lclCoord,OPTION) returns the
global coordinate gCoord corresponding to the local coordinate
lclCoord. OPTION determines the type of local-to-global coordinate
transformation.

gCoord = local2globalcoord(___ ,localOrigin) specifies the origin
of the local coordinate system.

gCoord = local2globalcoord(___ ,localAxes) specifies the axes of
the local coordinate system.

Input
Arguments

lclCoord

Local coordinates in rectangular or spherical coordinate form.
lclCoord is a 3-by-1 vector or 3-by-N matrix. Each column represents
a local coordinate.

If the coordinates are in rectangular form, the column represents
(X,Y,Z) in meters.

If the coordinates are in spherical form, the column represents (az,el,r).
az is the azimuth angle in degrees, el is the elevation angle in degrees,
and r is the radius in meters.

OPTION

Type of coordinate transformation. Valid strings are in the next table.

2-122

local2globalcoord

OPTION Transformation

'rr' Local rectangular to global
rectangular

'rs' Local rectangular to global
spherical

'sr' Local spherical to global
rectangular

'ss' Local spherical to global spherical

localOrigin

Origin of local coordinate system. localOrigin is a 3-by-1 column
vector containing the rectangular coordinate of the local coordinate
system origin with respect to the global coordinate system.

Default: [0; 0; 0]

localAxes

Axes of local coordinate system. localAxes is a 3-by-3 matrix with the
columns specifying the local X, Y, and Z axes in rectangular form with
respect to the global coordinate system.

Default: [1 0 0;0 1 0;0 0 1]

Output
Arguments

gCoord

Global coordinates in rectangular or spherical coordinate form. The
origin of the global coordinate system is at [0; 0; 0]. That system’s axes
are the standard unit basis vectors in three-dimensional space, [1; 0;
0], [0; 1; 0], and [0; 0; 1].

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.

2-123

local2globalcoord

The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Examples Convert between local and global coordinate in rectangular form.

gCoord = local2globalcoord([0; 1; 0], ...
'rr',[1; 1; 1]);

2-124

local2globalcoord

% Local origin is at [1; 1; 1]
% gCoord = [1 1 1]+[0 1 0];

Convert local spherical coordinate to global rectangular coordinate.

gCoord = local2globalcoord([30; 45; 4],'sr');
% 30 degree azimuth, 45 degree elevation, 4 meter radius

References [1] Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics: Principles and Practice in C, 2nd Ed. Reading, MA:
Addison-Wesley, 1995.

See Also global2localcoord | uv2azel | phitheta2azel | azel2uv |
azel2phitheta

Concepts • “Global and Local Coordinate Systems”

2-125

mdltest

Purpose Dimension of signal subspace

Syntax nsig = mdltest(X)
nsig = mdltest(X,'fb')

Description nsig = mdltest(X) estimates the number of signals, nsig, present in
a snapshot of data, X, that impinges upon the sensors in an array. The
estimator uses the Minimum Discription Length (MDL) test. The input
argument, X, is a complex-valued matrix containing a time sequence of
data samples for each sensor. Each row corresponds to a single time
sample for all sensors.

nsig = mdltest(X,'fb') estimates the number of signals. Before
estimating, it performs forward-backward averaging on the sample
covariance matrix constructed from the data snapshot, X. This syntax
can use any of the input arguments in the previous syntax.

Input
Arguments

X - Data snapshot
Complex-valued K-by-N matrix

Data snapshot, specified as a complex-valued, K-by-N matrix. A
snapshot is a sequence of time-samples taken simultaneous at each
sensor. In this matrix, K represents the number of time samples of the
data, while N represents the number of sensor elements.

Example: [–0.1211 + 1.2549i, 0.1415 + 1.6114i, 0.8932 + 0.9765i;]

Data Types
double
Complex Number Support: Yes

Output
Arguments

nsig - Dimension of signal subspace
Non-negative integer

Dimension of signal subspace, returned as a non-negative integer. The
dimension of the signal subspace is the number of signals in the data.

2-126

mdltest

Examples Estimate the Signal Subspace Dimensions for Two Arriving
Signals

Construct a data snapshot for two plane waves arriving at a
half-wavelength-spaced uniform line array with 10 elements. The plane
waves arrive from 0° and –25° azimuth, both with elevation angles of
0°. Assume the signals arrive in the presence of additive noise that is
both temporally and spatially Gaussian white noise. For each signal,
the SNR is 5 dB. Take 300 samples to build a 300-by-10 data snapshot.
Then, solve for the number of signals using mdltest.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
angles = [0 -25];
x = sensorsig(elementPos,300,angles,db2pow(-5));
Nsig = mdltest(x)

Nsig =

2

The result shows that the number of signals is two, as expected.

Estimate the Signal Subspace Dimensions Using
Forward-Backward Averaging

Construct a data snapshot for two plane waves arriving at a
half-wavelength-spaced uniform line array with 10 elements.
Correlated plane waves arrive from 0° and 10° azimuth, both with
elevation angles of 0°. Assume the signals arrive in the presence of
additive noise that is both temporally and spatially Gaussian white
noise. For each signal, the SNR is 10 dB. Take 300 samples to build a
300-by-10 data snapshot. Then, solve for the number of signals using
mdltest.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;

2-127

mdltest

angles = [0 10];
ncov = db2pow(-10);
scov = [1 .5]'*[1 .5];
x = sensorsig(elementPos,300,angles,ncov,scov);
Nsig = mdltest(x)

Nsig =

1

This result shows that aictest function cannot determine the number
of signals correctly when the signals are correlated.

Now, try the option of forward-backward smoothing.

Nsig = mdltest(x,'fb')

Nsig =

2

The addition of forward-backward smoothing yields the correct number
of signals.

Definitions Estimating the Number of Sources

AIC and MDL tests

Direction finding algorithms such as MUSIC and ESPRIT require
knowledge of the number of sources of signals impinging on the array
or equivalently, the dimension, d, of the signal subspace. The Akaike
Information Criterion (AIC) and the Minimum Description Length
(MDL) formulas are two frequently-used estimators for obtaining that
dimension. Both estimators assume that, besides the signals, the
data contains spatially and temporally white Gaussian random noise.
Finding the number of sources is equivalent to finding the multiplicity
of the smallest eigenvalues of the sampled spatial covariance matrix.
The sample spatial covariance matrix constructed from a data snapshot
is used in place of the actual covariance matrix.

2-128

mdltest

A requirement for both estimators is that the dimension of the signal
subspace be less than the number of sensors, N, and that the number of
time samples in the snapshot, K, be much greater than N.

A variant of each estimator exists when forward-backward averaging is
employed to construct the spatial covariance matrix. Forward-backward
averaging is useful for the case when some of the sources are highly
correlated with each other. In that case, the spatial covariance matrix
may be ill conditioned. Forward-backward averaging can only be used
for certain types of symmetric arrays, called centro-symmetric arrays.
Then the forward-backward covariance matrix can be constructed from
the sample spatial covariance matrix, S, using SFB = S + JS*J where J
is the exchange matrix. The exchange matrix maps array elements into
their symmetric counterparts. For a line array, it would be the identity
matrix flipped from left to right.

All the estimators are based on a cost function

L d K N d
N d

d

i
i d

N

i
i d

N N d

() () ln 
























 

 







1

1

1

1






















plus an added penalty term. The value λi represent the smallest
(N–d) eigenvalues of the spatial covariance matrix. For each specific
estimator, the solution for d is given by

• AIC

ˆ argmin () ()d L d d N dAIC
d

d   2

• AIC for forward-backward averaged covariance matrices

ˆ argmin () ():d L d d N dAIC FB
d

d   







1
2

2 1

2-129

mdltest

• MDL

ˆ argmin () (()) lnd L d d N d KMDL
d

d   







1
2

2 1

• MDL for forward-backward averaged covariance matrices

ˆ argmin () () lnd L d d N d KMDL FB
d

d   







1
4

2 1

References
[1] Van Trees, H.L. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also aictest | espritdoa | rootmusicdoa | spsmooth

2-130

mvdrweights

Purpose Minimum variance distortionless response (MVDR) beamformer
weights

Syntax wt = mvdrweights(pos,ang,cov)

Description wt = mvdrweights(pos,ang,cov) returns narrowband minimum
variance distortionless response (MVDR) beamformer weights for a
phased array. When applied to the elements of an array, they steer
the response of a sensor array in a specific arrival direction or set of
directions. The sensor array is defined by the sensor positions specified
in the pos argument. The arrival directions are specified by azimuth
and elevation angles in the ang argument. cov is the sensor spatial
covariance matrix between sensor elements. The output argument, wt,
is a matrix contains the beamformer weights for each sensor and each
direction. Each column of wt contains the weights for the corresponding
direction specified in ang. All elements in the sensor array are assumed
to be isotropic.

Input
Arguments

pos - Positions of array sensor elements
1-by-N real-valued vector | 2-by-N real-valued matrix | 3-by-N
real-valued matrix

Positions of the elements of a sensor array specified as a 1-by-N vector,
a 2-by-N matrix, or a 3-by-N matrix. In this vector or matrix, N
represents the number of elements of the array. Each column of pos
represents the coordinates of an element. You define sensor position
units in term of signal wavelength. If pos is a 1-by-N vector, then it
represents the y-coordinate of the sensor elements of a line array. The
x and z-coordinates are assumed to be zero. If pos is a 2-by-N matrix,
then it represents the (y,z)-coordinates of the sensor elements of a
planar array which is assumed to lie in the yz-plane. The x-coordinates
are assumed to be zero. If pos is a 3-by-N matrix, then the array has
arbitrary shape.

Example: [0, 0, 0; .1, .2, .3; 0,0,0]

Data Types
double

2-131

mvdrweights

ang - Beamforming directions
1-by-M real-valued vector | 2-by-M real-valued matrix

Beamforming directions specified as a 1-by-M vector or a 2-by-M
matrix. In this vector or matrix, M represents the number of incoming
signals. If ang is a 2-by-M matrix, each column specifies the direction
in azimuth and elevation of the beamforming direction as [az;el].
Angular units are specified in degrees. The azimuth angle must lie
between –180° and 180° and the elevation angle must lie between –90°
and 90°. The azimuth angle is the angle between the x-axis and the
projection of the beamforming direction vector onto the xy plane. The
angle is positive when measured from the x-axis toward the y-axis. The
elevation angle is the angle between the beamforming direction vector
and xy-plane. It is positive when measured towards the positive z axis.
If ang is a 1-by-M vector, then it represents a set of azimuth angles
with the elevation angles assumed to be zero.

Example: [45;0]

Data Types
double

cov - Sensor spatial covariance matrix
N-by-N complex-valued matrix

Sensor spatial covariance matrix specified as anN-by-N, complex-valued
matrix. In this matrix, N represents the number of sensor elements.
The covariance matrix consists of the variances of the element data and
the covariances of the data between the sensor elements and contains
contributions from all incoming signals and noise.

Example: [45;0]

Data Types
double
Complex Number Support: Yes

2-132

mvdrweights

Output
Arguments

wt - Beamformer weights
N-by-M complex-valued matrix

Beamformer weights returned as a complex-valued, N-by-M matrix.
In this matrix, N represents the number of sensor elements of the
array while M represents the number of beamforming directions. Each
column of wt corresponds to a beamforming direction specified in ang.

Examples MVDR Beamformer with Arrival Directions of 30 and 45
Degrees

Construct a 10-element, half-wavelength-spaced line array. Choose
two arrival directions of interest - one at 30 degrees azimuth and the
other at 45 degrees azimuth. Assume both directions have 0 degrees
elevation. Compute the MVDR beamformer weights for each direction.
Specify a sensor spatial covariance matrix that contains signals arriving
from -60 and 60 degrees and noise at -10 dB.

Set up the array and sensor spatial covariance matrix.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
Sn = sensorcov(elementPos,[-60 60],db2pow(-10));

Solve for the MVDR beamformer weights.

w = mvdrweights(elementPos,[30 45],Sn);

Plot the two MVDR array patterns.

plotangl = -90:90;
vv = steervec(elementPos,plotangl);
plot(plotangl,mag2db(abs(w'*vv)))
grid on
xlabel('Azimuth Angle (degrees)');
ylabel('Normalized Power (dB)');
legend('30 deg','45 deg');
title('MVDR Array Pattern')

2-133

mvdrweights

The figure shows plots for each beamformer direction. One plot has the
expected maximum gain at 30 degrees and the other at 45 degrees. The
nulls at -60 and 60 degrees arise from the fundamental property of the
MVDR beamformer of suppressing power in all directions except for
the arrival direction.

2-134

mvdrweights

Definitions Minimum variance distortionless response

The MVDR beamformer computes weights that minimize the total
output power of an array but sets the gain in one particular direction to

unity (see Van Trees [1], p. 442). If the steering vector, v0 , corresponds
to the direction of interest, then the MVDR weights are given by

w
v

v v
0

0 0





S

SH

1

1

|

where S is the spatial covariance matrix.

References
[1] Van Trees, H.L. Optimum Array Processing. New York, NY:
Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile
approach to spatial filtering”. IEEE ASSP Magazine, Vol. 5 No. 2 pp.
4–24.

See Also steervec | cbfweights | lcmvweights | sensorcov |
phased.MVDRBeamformer

2-135

noisepow

Purpose Receiver noise power

Syntax NPOWER = noisepow(NBW,NF,REFTEMP)

Description NPOWER = noisepow(NBW,NF,REFTEMP) returns the noise power,
NPOWER, in watts for a receiver. This receiver has a noise bandwidth
NBW in hertz, noise figure NF in decibels, and reference temperature
REFTEMP in degrees kelvin.

Input
Arguments

NBW

The noise bandwidth of the receiver in hertz. For a superheterodyne
receiver, the noise bandwidth is approximately equal to the bandwidth
of the intermediate frequency stages [1].

NF

Noise figure. The noise figure is a dimensionless quantity that indicates
how much a receiver deviates from an ideal receiver in terms of internal
noise. An ideal receiver only produces the expected thermal noise power
for a given noise bandwidth and temperature. A noise figure of 1
indicates that the noise power of a receiver equals the noise power of an
ideal receiver. Because an actual receiver cannot exhibit a noise power
value less than an ideal receiver, the noise figure is always greater
than or equal to one.

REFTEMP

Reference temperature in degrees kelvin. The temperature of the
receiver. Typical values range from 290–300 degrees kelvin.

Output
Arguments

NPOWER

Noise power in watts. The internal noise power contribution of the
receiver to the signal-to-noise ratio.

Examples Calculate the noise power of a receiver whose noise bandwidth is 10
kHz, noise figure is 1 dB, and reference temperature is 300 K.

2-136

noisepow

npower = noisepow(10e3,1,300);

References [1] Skolnik, M. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

See Also phased.ReceiverPreamp

2-137

npwgnthresh

Purpose Detection SNR threshold for signal in white Gaussian noise

Syntax SNRTHRESH = npwgnthresh(PFA)
SNRTHRESH = npwgnthresh(PFA,NPULS)
SNRTHRESH = npwgnthresh(PFA,NPULS,DTYPE)
SNRTHRESH = npwgnthresh(PFA,NPULS,DTYPE,OUTSCALE)

Description SNRTHRESH = npwgnthresh(PFA) calculates the SNR threshold in
decibels for detecting a deterministic signal in white Gaussian noise.
The detection uses the Neyman-Pearson (NP) decision rule to achieve
a specified probability of false alarm, PFA. This function uses a
square-law detector.

SNRTHRESH = npwgnthresh(PFA,NPULS) specifies NPULS as the number
of pulses used in the pulse integration.

SNRTHRESH = npwgnthresh(PFA,NPULS,DTYPE) specifies DTYPE as
the type of detection. A square law detector is used in noncoherent
detection.

SNRTHRESH = npwgnthresh(PFA,NPULS,DTYPE,OUTSCALE) specifies the
output scale, OUTSCALE, as ’db’ or ’linear’.

Input
Arguments

PFA

Probability of false alarm.

NPULS

Number of pulses used in the integration.

Default: 1

DTYPE

Detection type.

Specifies the type of pulse integration used in the NP decision rule.
Valid choices for DTYPE are 'coherent', 'noncoherent', and 'real'.
'coherent' uses magnitude and phase information of complex-valued

2-138

npwgnthresh

samples. 'noncoherent' uses squared magnitudes. 'real' uses
real-valued samples.

Default: 'noncoherent'

OUTSCALE

Output scale.

Specifies the scale of the output value. Valid choices for OUTSCALE
are'db' or 'linear'. When OUTSCALE is set to 'linear', the returned
threshold represents amplitude.

Default: 'db'

Output
Arguments

SNRTHRESH

Detection threshold expressed in signal-to-noise ratio in decibels or
linear if OUTSCALE is set to`linear'. The relationship between the
linear threshold and the threshold in dB is

T TdB lin 20 10log

Definitions Detection in Real-Valued White Gaussian Noise

This function is designed for the detection of a nonzero mean in a
sequence of Gaussian random variables. The function assumes the
random variables are independent and identically distributed, with
zero mean. The linear detection threshold λ for an NP detector can
be expressed as




 2 21N Pfaerfc ()

The threshold can also be expressed as a signal-to-noise ratio in decibels:

10 10 2 210

2

2 10
1 2

log log ()












   









N Pfaerfc

2-139

npwgnthresh

In these equations:

• σ2 is the variance of the white Gaussian noise sequence

• N is the number of samples

• erfc—1 is the inverse of the complementary error function

• Pfa is the probability of false alarm

Note For probabilities of false alarm greater than or equal to 1/2, the
formula for detection threshold as SNR is invalid since erfc-1 is less
than or equal to zero for values of its argument greater than or equal
to one. In that case, use the linear output of the function invoked by
setting OUTSCALE to'linear'.

Detection in Complex-Valued White Gaussian Noise
(Coherent Samples)

The NP detector for complex-valued signals is similar to that discussed
in “Detection in Real-Valued White Gaussian Noise” on page 2-139. In
addition, the function makes these assumptions:

• The variance of the complex-valued Gaussian random variable is
divided equally among the real and imaginary parts.

• The real and imaginary parts are uncorrelated.

Under these assumptions, the linear detection threshold for an NP
detector is




 N Pfaerfc 1 2()

and expressed as a signal-to-noise ratio in decibels is:

10 10 210

2

2 10
1 2

log log ()












   









N Pfaerfc

2-140

npwgnthresh

Note For probabilities of false alarm greater than or equal to 1/2, the
formula for detection threshold as SNR is invalid since erfc-1 is less
than or equal to zero for values of its argument greater than or equal
to one. In that case, use the linear output of the function invoked by
setting OUTSCALE to'linear'.

Detection of Noncoherent Samples in White Gaussian Noise

For noncoherent samples in white Gaussian noise, detection of a
nonzero mean leads to a square-law detector. For a detailed derivation,
see [2], pp. 324–329.

The linear detection threshold for the noncoherent NP detector is:




 P N Pfa
1 1(,)

The threshold expressed as a signal-to-noise ratio in decibels is:

10 10 110

2

2 10
1log log (,)













  P N Pfa

where P x y1(,) is the inverse of the lower incomplete gamma function,
Pfa is the probability of false alarm, and N is the number of pulses.

Examples Calculate the SNR threshold that achieves a probability of false alarm
0.01 using a detection type of 'real' with a single pulse. Then, verify
that this threshold is producing a Pfa of approximately 0.01. Do so by
constructing 10000 white real Gaussian noise samples and counting
how many times the sample passes the threshold.

snrthreshold = npwgnthresh(0.01,1,'real');
npower = 1; Ntrial = 10000;
noise = sqrt(npower)*randn(1,Ntrial);
threshold = sqrt(npower*db2pow(snrthreshold));
calculated_Pfa = sum(noise>threshold)/Ntrial;

2-141

npwgnthresh

Plot the SNR threshold against the number of pulses, for real and
complex data. In each case, the SNR threshold achieves a probability of
false alarm of 0.001.

snrcoh = zeros(1,10); % Preallocate space
snrreal = zeros(1,10);
Pfa = 1e-3;
for num = 1:10

snrreal(num) = npwgnthresh(Pfa,num,'real');
snrcoh(num) = npwgnthresh(Pfa,num,'coherent');

end
plot(snrreal,'ko-'); hold on;
plot(snrcoh,'b.-');
legend('Real data with integration',...

'Complex data with coherent integration',...
'location','southeast');

xlabel('Number of Pulses');
ylabel('SNR Required for Detection');
title('SNR Threshold for P_F_A = 0.001')
hold off

2-142

npwgnthresh

Plot the linear detection threshold against the number of pulses, for real
and complex data. In each case, the threshold achieves a probability of
false alarm of 0.001.

2-143

npwgnthresh

snrcoh = zeros(1,10); % preallocate space
snrreal = zeros(1,10);
Pfa = 1e-3;
for num = 1:10

snrreal(num) = npwgnthresh(Pfa,num,'real','linear');
snrcoh(num) = npwgnthresh(Pfa,num,'coherent','linear');

end
plot(snrreal,'ko-'); hold on;
plot(snrcoh,'b.-');
legend('Real data with integration',...

'Complex data with coherent integration',...
'location','southeast');

xlabel('Number of Pulses');
ylabel('Detection Threshold');
str = sprintf('Linear Detection Threshold for P_F_A = %4.3f',Pfa);
title(str)
hold off

2-144

npwgnthresh

References [1] Kay, S. M. Fundamentals of Statistical Signal Processing: Detection
Theory. Upper Saddle River, NJ: Prentice Hall, 1998.

2-145

npwgnthresh

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also rocpfa | rocsnr

2-146

phitheta2azel

Purpose Convert angles from phi/theta form to azimuth/elevation form

Syntax AzEl = phitheta2azel(PhiTheta)

Description AzEl = phitheta2azel(PhiTheta) converts the phi/theta angle pairs
to their corresponding azimuth/elevation angle pairs.

Input
Arguments

PhiTheta - Phi/theta angle pairs
two-row matrix

Phi and theta angles, specified as a two-row matrix. Each column of the
matrix represents an angle in degrees, in the form [phi; theta].

Data Types
double

Output
Arguments

AzEl - Azimuth/elevation angle pairs
two-row matrix

Azimuth and elevation angles, returned as a two-row matrix. Each
column of the matrix represents an angle in degrees, in the form
[azimuth; elevation]. The matrix dimensions of AzEl are the same as
those of PhiTheta.

Definitions Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2-147

phitheta2azel

The coordinate transformations between φ/θ and az/el are described
by the following equations

sin() sin sin
tan() cos tan

cos cos()cos()
tan ta

el
az

el az







 
 


 nn() / sin()el az

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

2-148

phitheta2azel

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Examples Conversion of Phi/Theta Pair

Find the corresponding azimuth/elevation representation for
φ = 30 degrees and θ = 0 degrees.

AzEl = phitheta2azel([30; 0]);

See Also azel2phitheta

Concepts • “Spherical Coordinates”

2-149

phitheta2azelpat

Purpose Convert radiation pattern from phi/theta form to azimuth/elevation
form

Syntax pat_azel = phitheta2azelpat(pat_phitheta,phi,theta)
pat_azel = phitheta2azelpat(pat_phitheta,phi,theta,az,el)
[pat_azel,az,el] = phitheta2azelpat(___)

Description pat_azel = phitheta2azelpat(pat_phitheta,phi,theta) expresses
the antenna radiation pattern pat_phitheta in azimuth/elevation
angle coordinates instead of φ/θ angle coordinates. pat_phitheta
samples the pattern at φ angles in phi and θ angles in theta. The
pat_azel matrix uses a default grid that covers azimuth values from
–90 to 90 degrees and elevation values from –90 to 90 degrees. In this
grid, pat_azel is uniformly sampled with a step size of 1 for azimuth
and elevation. The function interpolates to estimate the response of
the antenna at a given direction.

pat_azel = phitheta2azelpat(pat_phitheta,phi,theta,az,el)
uses vectors az and el to specify the grid at which to sample pat_azel.
To avoid interpolation errors, az should cover the range [–180, 180] and
el should cover the range [–90, 90].

[pat_azel,az,el] = phitheta2azelpat(___) returns vectors
containing the azimuth and elevation angles at which pat_azel
samples the pattern, using any of the input arguments in the previous
syntaxes.

Input
Arguments

pat_phitheta - Antenna radiation pattern in phi/theta form
Q-by-P matrix

Antenna radiation pattern in phi/theta form, specified as a Q-by-P
matrix. pat_phitheta samples the 3-D magnitude pattern in decibels,
in terms of φ and θ angles. P is the length of the phi vector, and Q
is the length of the theta vector.

2-150

phitheta2azelpat

Data Types
double

phi - Phi angles
vector of length P

Phi angles at which pat_phitheta samples the pattern, specified as a
vector of length P. Each φ angle is in degrees, between 0 and 360.

Data Types
double

theta - Theta angles
vector of length Q

Theta angles at which pat_phitheta samples the pattern, specified as
a vector of length Q. Each θ angle is in degrees, between 0 and 180.

Data Types
double

az - Azimuth angles
[-180:180] (default) | vector of length L

Azimuth angles at which pat_azel samples the pattern, specified as
a vector of length L. Each azimuth angle is in degrees, between –180
and 180.

Data Types
double

el - Elevation angles
[-90:90] (default) | vector of length M

Elevation angles at which pat_azel samples the pattern, specified as
a vector of length M. Each elevation angle is in degrees, between –90
and 90.

Data Types
double

2-151

phitheta2azelpat

Output
Arguments

pat_azel - Antenna radiation pattern in azimuth/elevation form
M-by-L matrix

Antenna radiation pattern in azimuth/elevation form, returned as
an M-by-L matrix. pat_azel samples the 3-D magnitude pattern in
decibels, in terms of azimuth and elevation angles. L is the length of
the az vector, and M is the length of the el vector.

az - Azimuth angles
vector of length L

Azimuth angles at which pat_azel samples the pattern, returned as a
vector of length L. Angles are expressed in degrees.

el - Elevation angles
vector of length M

Elevation angles at which pat_azel samples the pattern, returned as a
vector of length M. Angles are expressed in degrees.

Definitions Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2-152

phitheta2azelpat

The coordinate transformations between φ/θ and az/el are described
by the following equations

sin() sin sin
tan() cos tan

cos cos()cos()
tan ta

el
az

el az







 
 


 nn() / sin()el az

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

2-153

phitheta2azelpat

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Examples Conversion of Radiation Pattern

Convert a radiation pattern to azimuth/elevation form, with the
azimuth and elevation angles spaced 1 degree apart.

Define the pattern in terms of φ and θ.

phi = 0:360;
theta = 0:180;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

2-154

phitheta2azelpat

Convert the pattern to azimuth/elevation space.

pat_azel = phitheta2azelpat(pat_phitheta,phi,theta);

Plot Converted Radiation Pattern

Convert a radiation pattern from theta/phi coordinates to
azimuth/elevation coordinates, with azimuth and elevation angles
spaced apart.

Define the pattern in terms of phi, , and theta, , coordinates.

phi = 0:360;
theta = 0:180;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to azimuth/elevation coordinates. Get the azimuth
and elevation angles for use in plotting.

[pat_azel,az,el] = phitheta2azelpat(pat_phitheta,phi,theta);

Plot the radiation pattern.

H = surf(az,el,pat_azel);
set(H,'LineStyle','none')
xlabel('Azimuth (degrees)');
ylabel('Elevation (degrees)');
zlabel('Pattern');

2-155

phitheta2azelpat

Convert Radiation Pattern For Specific Azimuth/Elevation
Values

Convert a radiation pattern from phi/theta coordinates to
azimuth/elevation coordinates, with the azimuth and elevation angles
spaced apart.

Define the pattern in terms of phi and theta.

phi = 0:360;

2-156

phitheta2azelpat

theta = 0:180;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Define the set of azimuth and elevation angles at which to sample the
pattern. Then, convert the pattern.

az = -180:5:180;
el = -90:5:90;
pat_azel = phitheta2azelpat(pat_phitheta,phi,theta,az,el);

Plot the radiation pattern.

H = surf(az,el,pat_azel);
set(H,'LineStyle','none')
xlabel('Azimuth (degrees)');
ylabel('Elevation (degrees)');
zlabel('Pattern');

2-157

phitheta2azelpat

See Also phased.CustomAntennaElement | phitheta2azel | azel2phitheta |
azel2phithetapat

Related
Examples

• Antenna Array Analysis with Custom Radiation Pattern

Concepts • “Spherical Coordinates”

2-158

../examples/antenna-array-analysis-with-custom-radiation-pattern.html

phitheta2uv

Purpose Convert phi/theta angles to u/v coordinates

Syntax UV = phitheta2uv(PhiTheta)

Description UV = phitheta2uv(PhiTheta) converts the phi/theta angle pairs to
their corresponding u/v space coordinates.

Input
Arguments

PhiTheta - Phi/theta angle pairs
two-row matrix

Phi and theta angles, specified as a two-row matrix. Each column of the
matrix represents an angle in degrees, in the form [phi; theta].

Data Types
double

Output
Arguments

UV - Angle in u/v space
two-row matrix

Angle in u/v space, returned as a two-row matrix. Each column of the
matrix represents an angle in the form [u; v]. The matrix dimensions of
UV are the same as those of PhiTheta.

Definitions Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2-159

phitheta2uv

The coordinate transformations between φ/θ and az/el are described
by the following equations

sin() sin sin
tan() cos tan

cos cos()cos()
tan ta

el
az

el az







 
 


 nn() / sin()el az

U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

2-160

phitheta2uv

u = cos(el) sin(az)

v = sin(el)

The values of u and v satisfy the inequalities

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v

tan(φ) = v/u

sin(θ) = sqrt(u2 + v2)

The azimuth and elevation angles can also be written in terms of u and v

sin(el) = v

tan(az) = u/sqrt(1 – u2 – v2)

Examples Conversion of Phi/Theta Pair

Find the corresponding u/v representation for φ = 30 degrees and
θ = 0 degrees.

UV = phitheta2uv([30; 0]);

See Also uv2phitheta

Concepts • “Spherical Coordinates”

2-161

phitheta2uvpat

Purpose Convert radiation pattern from phi/theta form to u/v form

Syntax pat_uv = phitheta2uvpat(pat_phitheta,phi,theta)
pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v)
[pat_uv,u,v] = phitheta2uvpat(___)

Description pat_uv = phitheta2uvpat(pat_phitheta,phi,theta) expresses the
antenna radiation pattern pat_phitheta in u/v space coordinates
instead of φ/θ angle coordinates. pat_phitheta samples the pattern
at φ angles in phi and θ angles in theta. The pat_uv matrix uses a
default grid that covers u values from –1 to 1 and v values from –1 to
1. In this grid, pat_uv is uniformly sampled with a step size of 0.01
for u and v. The function interpolates to estimate the response of the
antenna at a given direction. Values in pat_uv are NaN for u and v
values outside the unit circle because u and v are undefined outside
the unit circle.

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v) uses
vectors u and v to specify the grid at which to sample pat_uv. To avoid
interpolation errors, u should cover the range [–1, 1] and v should cover
the range [–1, 1].

[pat_uv,u,v] = phitheta2uvpat(___) returns vectors containing
the u and v coordinates at which pat_uv samples the pattern, using
any of the input arguments in the previous syntaxes.

Input
Arguments

pat_phitheta - Antenna radiation pattern in phi/theta form
Q-by-P matrix

Antenna radiation pattern in phi/theta form, specified as a Q-by-P
matrix. pat_phitheta samples the 3-D magnitude pattern in decibels,
in terms of φ and θ angles. P is the length of the phi vector, and Q
is the length of the theta vector.

Data Types
double

2-162

phitheta2uvpat

phi - Phi angles
vector of length P

Phi angles at which pat_phitheta samples the pattern, specified as a
vector of length P. Each φ angle is in degrees, between 0 and 180.

Data Types
double

theta - Theta angles
vector of length Q

Theta angles at which pat_phitheta samples the pattern, specified as
a vector of length Q. Each θ angle is in degrees, between 0 and 90. Such
angles are in the hemisphere for which u and v are defined.

Data Types
double

u - u coordinates
[-1:0.01:1] (default) | vector of length L

u coordinates at which pat_uv samples the pattern, specified as a vector
of length L. Each u coordinate is between –1 and 1.

Data Types
double

v - v coordinates
[-1:0.01:1] (default) | vector of length M

v coordinates at which pat_uv samples the pattern, specified as a vector
of length M. Each v coordinate is between –1 and 1.

Data Types
double

2-163

phitheta2uvpat

Output
Arguments

pat_uv - Antenna radiation pattern in u/v form
M-by-L matrix

Antenna radiation pattern in u/v form, returned as an M-by-L matrix.
pat_uv samples the 3-D magnitude pattern in decibels, in terms of u
and v coordinates. L is the length of the u vector, and M is the length of
the v vector. Values in pat_uv are NaN for u and v values outside the
unit circle because u and v are undefined outside the unit circle.

u - u coordinates
vector of length L

u coordinates at which pat_uv samples the pattern, returned as a
vector of length L.

v - v coordinates
vector of length M

v coordinates at which pat_uv samples the pattern, returned as a vector
of length M.

Definitions Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2-164

phitheta2uvpat

The coordinate transformations between φ/θ and az/el are described
by the following equations

sin() sin sin
tan() cos tan

cos cos()cos()
tan ta

el
az

el az







 
 


 nn() / sin()el az

U/V Space

The u and v coordinates are the direction cosines of a vector with
respect to the y-axis and z-axis, respectively.

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

2-165

phitheta2uvpat

In terms of azimuth and elevation, the u and v coordinates are

u = cos(el) sin(az)

v = sin(el)

The values of u and v satisfy the inequalities

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v

tan(φ) = v/u

sin(θ) = sqrt(u2 + v2)

The azimuth and elevation angles can also be written in terms of u and v

sin(el) = v

tan(az) = u/sqrt(1 – u2 – v2)

Examples Conversion of Radiation Pattern

Convert a radiation pattern to u/v form, with the u and v coordinates
spaced by 0.01.

Define the pattern in terms of φ and θ.

phi = 0:360;
theta = 0:90;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to u/v space.

2-166

phitheta2uvpat

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta);

Convert and Plot Radiation Pattern

Convert a radiation pattern to coordinates, with the and
coordinates spaced by 0.01.

Define the pattern in terms of and .

phi = 0:360;
theta = 0:90;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to coordinates. Store the and coordinates
for use in plotting.

[pat_uv,u,v] = phitheta2uvpat(pat_phitheta,phi,theta);

Plot the result.

H = surf(u,v,pat_uv);
set(H,'LineStyle','none')
xlabel('u');
ylabel('v');
zlabel('Pattern');

2-167

phitheta2uvpat

Convert Radiation Pattern For Specific U/V Values

Convert a radiation pattern to coordinates, with the and
coordinates spaced by 0.05.

Define the pattern in terms of and .

phi = 0:360;
theta = 0:90;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

2-168

phitheta2uvpat

Define the set of and coordinates at which to sample the pattern.
Then, convert the pattern.

u = -1:0.05:1;
v = -1:0.05:1;
pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v);

Plot the result.

H = surf(u,v,pat_uv);
set(H,'LineStyle','none')
xlabel('u');
ylabel('v');
zlabel('Pattern');

2-169

phitheta2uvpat

See Also phased.CustomAntennaElement | phitheta2uv | uv2phitheta |
uv2phithetapat

Concepts • “Spherical Coordinates”

2-170

physconst

Purpose Physical constants

Syntax Const = physconst(Name)

Description Const = physconst(Name) returns the constant corresponding to
the string Name in SI units. Valid values of Name are 'LightSpeed',
'Boltzmann', and 'EarthRadius'.

Input
Arguments

Name

String that indicates which physical constant the function returns. The
valid strings are not case sensitive.

Definitions The following table lists the supported constants and their values in
SI units.

Constant Description Value

'LightSpeed' Speed of light in
vacuum

299,792,458 m/s.
Most commonly
denoted by c.

'Boltzmann' Boltzmann constant
relating energy to
temperature

1 38 10 23. x − J/K. Most
commonly denoted by
k.

'EarthRadius' Mean radius of the
Earth

6,371,000 m

Examples Wavelength Corresponding to Known Frequency

Determine the wavelength of an electromagnetic wave whose frequency
is 1 GHz.

freq = 1e9;
lambda = physconst('LightSpeed')/freq;

2-171

physconst

Thermal Noise Power

Approximate the thermal noise power per unit bandwidth in the I and
Q channels of a receiver.

Define the receiver temperature and Boltzmann constant.

T = 290;
k = physconst('Boltzmann');

Compute the noise power per unit bandwidth, split evenly between the
in-phase and quadrature channels.

Noise_power = 10*log10(k*T/2);

2-172

pol2circpol

Purpose Convert linear component representation of field to circular component
representation

Syntax cfv = pol2circpol(fv)

Description cfv = pol2circpol(fv) converts the linear polarization components
of the field or fields contained in fv to their equivalent circular
polarization components in cfv. The expression of a field in terms of
a two-row vector of linear polarization components is called the Jones
vector formalism.

Input
Arguments

fv - Field vector in linear component representation
1-by-N complex-valued row vector or a 2-by-N complex-valued matrix

Field vector in its linear component representation specified as a 1-by-N
complex row vector or a 2-by-N complex matrix. If fv is a matrix, each
column in fv represents a field in the form of [Eh;Ev], where Eh and Ev
are the field’s horizontal and vertical polarization components. If fv is
a vector, each entry in fv is assumed to contain the polarization ratio,
Ev/Eh. For a row vector, the value Inf designates the case when the
ratio is computed for a field with Eh = 0.

Example: [1;-i]

Example: 2 + pi/3*i

Data Types
double
Complex Number Support: Yes

Output
Arguments

cfv - Field vector in circular component representation
1-by-N complex-valued row vector or 2-by-N complex-valued matrix

Field vector in circular component representation returned as a 1-by-N
complex-valued row vector or 2-by-Ncomplex-valued matrix. cfv has
the same dimensions as fv. If fv is a matrix, each column of cfv
contains the circular polarization components, [El;Er], of the field
where El and Er are the left-circular and right-circular polarization

2-173

pol2circpol

components. If fv is a row vector, then cfv is also a row vector and each
entry in cfv contains the circular polarization ratio, defined as Er/El.

Examples Circular Polarization Components from Linear Polarization
Components

Express a 45° linear polarized field in terms of right-circular and
left-circular components.

fv = [2;2]
cfv = pol2circpol(fv)

cfv =

1.4142 - 1.4142i
1.4142 + 1.4142i

Circular Polarization Components from Linear Polarization
Components for Two Fields

Specify two input fields [1+1i;-1+1i] and [1;1] in the same matrix.
The first field is a linear representation of a left-circularly polarized
field and the second is a linearly polarized field.

fv=[1+1i 1;-1+1i 1]
cfv = pol2circpol(fv)

cfv =

1.4142 + 1.4142i 0.7071 - 0.7071i
0.0000 + 0.0000i 0.7071 + 0.7071i

References
[1] Mott, H., Antennas for Radar and Communications, John Wiley &
Sons, 1992.

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley
& Sons, 1998, pp. 299–302

2-174

pol2circpol

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge:
Cambridge University Press, 1999, pp 25–32.

See Also circpol2pol | polellip | polratio | stokes

2-175

polellip

Purpose Parameters of ellipse traced out by tip of a polarized field vector

Syntax tau = polellip(fv)
[tau,epsilon] = polellip(fv)
[tau,epsilon,ar] = polellip(fv)
[tau,epsilon,ar,rs] = polellip(fv)

polellip(fv)

Description tau = polellip(fv) returns the tilt angle, in degrees, of the
polarization ellipse of a field or set of fields specified in fv. fv contains
the linear polarization components of a field in either one of two forms:
(1) each column represents a field in the form of [Eh;Ev], where Eh and
Ev are the field’s horizontal and vertical linear polarization components
or (2) each column contains the polarization ratio, Ev/Eh. The
expression of a field in terms of a two-row vector of linear polarization
components is called the Jones vector formalism.

[tau,epsilon] = polellip(fv) returns, in addition, a row vector,
epsilon, containing the ellipticity angle (in degrees) of the polarization
ellipses. The ellipticity angle is the angle determined by the ratio of
the length of the semi-minor axis to semi-major axis and lies in the
range [-45 ,45]. This syntax can use any of the input arguments in
the previous syntax.

[tau,epsilon,ar] = polellip(fv) returns, in addition, a row vector,
ar, containing the axial ratios of the polarization ellipses. The axial
ratio is defined as the ratio of the lengths of the semi-major axis of the
ellipse to the semi-minor axis. This syntax can use any of the input
arguments in the previous syntaxes.

[tau,epsilon,ar,rs] = polellip(fv) returns, in addition, a cell
array of strings rs, containing the rotation senses of the polarization
ellipses. Each entry in the array is one of 'Linear', 'Left Circular',

2-176

polellip

'Right Circular', 'Left Elliptical' or 'Right Elliptical'. This
syntax can use any of the input arguments in the previous syntaxes.

polellip(fv) plots the polarization ellipse of the field specified in
fv. This syntax requires that fv have only one column. Unlike the
returned arguments, the size of the drawn ellipse depends upon the
magnitude of fv.

Input
Argument

fv - Field vector in linear component representation
1-by-N complex-valued row vector or 2-by-N complex-valued matrix

Field vector in linear component representation specified as a 1-by-N
complex-valued row vector or 2-by-N complex-valued matrix. Each
column contains an instance of a field specification. If fv is a matrix,
each column in fv represents a field in the form of [Eh;Ev], where
Eh and Ev are the field’s linear horizontal and vertical polarization
components. If fv is a row vector, then the row contains the ratio
of the vertical to horizontal components of the field Ev/Eh. For a row
vector, the value Inf is allowed to designate the case when the ratio is
computed for Eh = 0. Eh and Ev cannot both be set to zero.

Example: [1;-i]

Example: 2 + pi/3*i

Data Types
double
Complex Number Support: Yes

Output
Arguments

tau - Tilt angle of polarization ellipse
1-by-N real-valued row vector

Tilt angle of polarization ellipse returned as a 1-by-N real-valued row
vector. Each entry in tau contains the tilt angle of the polarization
ellipse associated with each column of the field fv. The tilt angle is the
angle between the semi-major axis of the ellipse and the horizontal axis
(i.e. xaxis) and lies in the range [-90,90] .

epsilon - Ellipticity angle of the polarization ellipse

2-177

polellip

1-by-N real-valued row vector

Ellipticity angle of the polarization ellipse returned as 1-by-N
real-valued row vector. Each entry in epsilon contains the ellipticity
angle of the polarization ellipse associated with each column of the
field fv. The ellipticity angle describes the shape of the ellipse and lies
in the range [-45 ,45].

ar - Axial ratio of the polarization ellipse
1-by-N real-valued row vector

Axial ratio of the polarization ellipse returned as a 1-by-N real-valued
row vector. Each entry in ar contains the axial ratio of the polarization
ellipse associated with each column of the field fv. The axial ratio is
the signed ratio of the major-axis length to the minor-axis length of
the polarization ellipse. Its absolute value is always greater than or
equal to one. The sign of ar carries the rotational sense of the vector – a
negative sign denotes left-handed rotation and a positive sign denotes
right-handed rotation.

rs - Rotation sense of the polarization ellipse
1-by-N cell array of strings

Rotation sense of the polarization ellipse returned as a 1-by-N cell
array of strings. Each entry in rs contains the rotation sense of the
polarization ellipse associated with each column of the field fv. The
rotation sense can be one of 'Linear', 'Left Circular', 'Right
Circular', 'Left Elliptical' or 'Right Elliptical'.

Examples Tilt Angle for Linearly Polarized Field

Create an input field that is linearly polarized by setting both the
horizontal and vertical components to have the same phase.

fv = [2;1];
tau = polellip(fv)

tau =

2-178

polellip

26.5651

For linear polarization, tau, can be computed from
tau=atan(fv(2)/fv(1))*180/pi .

Tilt Angle and Ellipticity for Elliptically Polarized Field

Start with an elliptically polarized input field (the horizontal and
vertical components differ in magnitude and in phase). Choose the
phase difference to be 90°.

fv = [3*exp(-i*pi/2);1];
[tau,epsilon] = polellip(fv)

tau =

2.3389e-15

epsilon =

18.435

The tilt vanishes because of the 90° phase difference between the
horizontal and vertical components of the field.

Tilt Angle, Ellipticity and Axial Ratio for Elliptically Polarized
Field

Start with an elliptically polarized input field (the horizontal and
vertical components differ in magnitude and in phase). Choose the
phase difference to be 60°.

fv = [2*exp(-i*pi/3);1];
[tau,epsilon,ar] = polellip(fv)

tau =

16.8450

epsilon =

2-179

polellip

21.9269

ar =

-2.4842

The nonzero tilt occurs because of the 60° phase difference. The
negative value of ar signifies left elliptical polarization.

Tilt Angle, Ellipticity, Axial Ratio and Rotation Sense for
Elliptically Polarized Field

Start with an elliptically polarized input field (the horizontal and
vertical components differ in magnitude and in phase). Choose the
phase difference to be 60°.

fv = [2*exp(-i*pi/3);1];
[tau,epsilon,ar,rs] = polellip(fv)

tau =

16.8450

epsilon =

21.9269

ar =

-2.4842

rs =

'Left Elliptical'

The nonzero tilt occurs because of the 60° phase difference and the
rotation sense is 'Left Elliptical' indicating that the tip of the field
vector is moving clockwise when looking towards the source of the field.

2-180

polellip

Polarization Ellipse

Draw the figure of an elliptically polarized field. Begin with an
elliptically polarized input field (the horizontal and vertical components
differ in magnitude and in phase) and choose the phase difference to
be 60 degrees.

fv = [2*exp(-i*pi/3);1];
polellip(fv)

2-181

polellip

The rotation sense is 'Left Elliptical' as shown by the direction of
the arrow on the ellipse. The filled circle at the origin indicates that the
observer is looking towards the source of the field.

References
[1] Mott, H., Antennas for Radar and Communications, John Wiley &
Sons, 1992.

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley
& Sons, 1998, pp. 299–302

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge:
Cambridge University Press, 1999, pp 25–32.

See Also circpol2pol | pol2circpol | polratio | stokes

2-182

polloss

Purpose Polarization loss

Syntax rho = polloss(fv_tr,fv_rcv)
rho = polloss(fv_tr,fv_rcv,pos_rcv)
rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv)
rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv,pos_tr)
rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv,pos_tr,axes_tr)

Description rho = polloss(fv_tr,fv_rcv) returns the loss, in decibels, because of
mismatch between the polarization of a transmitted field, fv_tr, and
the polarization of the receiving antenna, fv_rcv. The field vector
lies in a plane orthogonal to the direction of propagation from the
transmitter to the receiver. The transmitted field is represented as a
2-by-1 column vector [Eh;Ev]. In this vector, Eh and Ev are the field’s
horizontal and vertical linear polarization components with respect
to the transmitter’s local coordinate system. The receiving antenna’s
polarization is specified by a 2-by-1 column vector, fv_rcv. You can
also specify this polarization in the form of [Eh;Ev] with respect to the
receiving antenna’s local coordinate system. In this syntax, both local
coordinate axes align with the global coordinate system.

rho = polloss(fv_tr,fv_rcv,pos_rcv) specifies, in addition, the
position of the receiver. The receiver is defined as a 3-by-1 column
vector, [x;y;z], with respect to the global coordinate system (position
units are in meters). This syntax can use any of the input arguments in
the previous syntax.

rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv) specifies, in
addition, the orthonormal axes, axes_rcv. These axes define the
receiver’s local coordinate system as a 3-by-3 matrix. The first
column gives the x-axis of the local system with respect to the global
coordinate system. The second and third columns give the y and z axes,
respectively. This syntax can use any of the input arguments in the
previous syntaxes.

2-183

polloss

rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv,pos_tr) specifies,
in addition, the position of the transmitter as a 3-by-1 column vector,
[x;y;z], with respect to the global coordinate system (position units
are in meters). This syntax can use any of the input arguments in the
previous syntaxes.

rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv,pos_tr,axes_tr)
specifies, in addition, the orthonormal axes, axes_tr. These axes
define the transmitter’s local coordinate system as a 3-by-3 matrix.
The first column gives the x-axis of the local system with respect to the
global coordinate system. The second and third columns give the y and
z axes, respectively. This syntax can use any of the input arguments
in the previous syntaxes.

Input
Arguments

fv_tr - Transmitted field vector in linear component
representation
2-by-1 complex-valued column vector

The transmitted field vector in linear component representation
specified as a 2-by-1, complex-valued column vector [Eh;Ev]. In
this vector, Eh and Ev are the field’s horizontal and vertical linear
components.

Example: [1;1]

Data Types
double
Complex Number Support: Yes

fv_rcv - Receiver polarization vector in linear component
representation
2-by-1 complex-valued column vector

Receiver polarization vector in linear component representation
specified as a 2-by-1, complex-valued column vector [Eh;Ev]. In this
vector, Eh and Ev are the polarization vector’s horizontal and vertical
linear components.

Example: [0;1]

2-184

polloss

Data Types
double
Complex Number Support: Yes

pos_rcv - Receiving antenna position
[0;0;0] (default) | 3-by-1 real-valued column vector

Receiving antenna position specified as a 3-by-1, real-valued column
vector. The components of pos_rcv are specified in the global
coordinate system as [x;y;z].

Example: [1000;0;0]

Data Types
double

axes_rcv - Receiving antenna local coordinate axes
3-by-3 identity matrix (default) | 3-by-3 real-valued matrix

Receiving antenna local coordinate axes specified as a 3-by-3,
real-valued matrix. Each column is a unit vector specifying the local
coordinate system’s orthonormal x, y, and z axes, respectively, with
respect to the global coordinate system. Each column is written in
[x;y;z] form. If axes_rcv is specified as the identity matrix, the local
coordinate system is aligned with the global coordinate system.

Example: [1, 0, 0; 0, 1, 0; 0, 0 ,1]

Data Types
double

pos_tr - Transmitter position
[0;0;0] (default) | 3-by-1 real-valued column vector

Transmitter position specified as a 3-by-1, real-valued column vector.
The components of pos_tr are specified in the global coordinate system
as [x;y;z].

Example: [0;0;0]

2-185

polloss

Data Types
double

axes_tr - Transmitting antenna local coordinate axes
3-by-3 identity matrix (default) | 3-by-3 real-valued matrix

Transmitting antenna local coordinate axes specified as a 3-by-3,
real-valued matrix. Each column is a unit vector specifying the local
coordinate system’s orthonormal x, y, and z axes, respectively, with
respect to the global coordinate system. Each column is written in
[x;y;z] form. If axes_tr is the identity matrix, the local coordinate
system is aligned with the global coordinate system.

Example: [1, 0, 0; 0, 1, 0; 0, 0 ,1]

Data Types
double

Output
Arguments

rho - Polarization loss
scalar

Polarization loss returned as scalar in decibel units. The polarization
loss is the projection of the normalized transmitted field vector into
the normalized receiving antenna polarization vector. Its value lies
between zero and unity. When converted into dB, (and a sign changed
to show loss as positive) its value lies between 0 and -Inf.

Examples Mismatch Between a 45° Polarized Field and a Horizontally
Polarized Receiver

Begin with a 45° polarized transmitted field and a receiver that
is horizontally polarized. By default, the transmitter and receiver
local axes coincide with the global coordinate system. Compute the
polarization loss in dB.

fv_tr = [1;1];
fv_rcv = [1;0];
rho = polloss(fv_tr,fv_rcv);

2-186

polloss

rho =

3.0103

The loss is 3 dB as expected because only half the power of the field
matches to the receive antenna polarization.

No Polarization Loss Because of Receiver Motion

Begin with identical transmitter and receiver polarizations. Place the
receiver at a position 100 meters along the y-axis. The transmitter is at
the origin (its default position) and both local coordinate axes coincide
with the global coordinate system (by default). First, compute the
polarization loss. Then, move the receiver 100 meters along the x-axis,
and compute the polarization loss again.

fv_tr = [1;0];
fv_rcv = [1;0];
pos_rcv = [0;100;0];
rho(1) = polloss(fv_tr,fv_rcv,pos_rcv);
pos_rcv = [100;100;0];
rho(2) = polloss(fv_tr,fv_rcv,pos_rcv);

rho =

0 0

No polarization loss occurs at either position. The spherical basis
vectors of each antenna are parallel to their counterparts and the
polarization vectors are the same.

Loss Because of Receiver Axes Rotation

Start with identical transmitter and receiver polarizations. Put the
receiver at a position 100 meters along the y-axis. The transmitter
is at the origin (default) and both local coordinate axes coincide with
the global coordinate system (default). Compute the loss, and then
rotate the receiver 30° around the y-axis. This rotation changes the
azimuth and elevation of the transmitter with respect to the receiver
and, therefore, the direction of polarization.

2-187

polloss

fv_tr = [1;0];
fv_rcv = [1;0];
pos_rcv = [0;100;0];
ax_rcv = azelaxes(0,0);
rho(1) = polloss(fv_tr,fv_rcv,pos_rcv,ax_rcv);
ax_rcv = roty(30)*ax_rcv;
rho(2) = polloss(fv_tr,fv_rcv,pos_rcv,ax_rcv);

rho =

0 1.2494

The receiver polarization vector remains unchanged. However, rotating
the local coordinate system changes the direction of the field of the
receiving antenna polarization with respect to global coordinates. This
change results in a 1.2 dB loss.

No Polarization Loss Because of Transmitter Motion

Start with identical transmitter and receiver polarizations. Put the
receiver at a position 100 meters along the y-axis. The transmitter is
at the origin (default) and both local coordinate axes coincide with the
global coordinate system (default). First, compute the polarization loss.
Then, move the transmitter 100 meters along the x-axis and 100 meters
along the y-axis, and compute the polarization loss again.

fv_tr = [1;0];
fv_rcv = [1;0];
pos_rcv = [0;100;0];
ax_rcv = azelaxes(0,0);
pos_tr = [0;0;0];
rho(1) = polloss(fv_tr,fv_rcv,pos_rcv,ax_rcv,pos_tr);
pos_tr = [100;100;0];
rho(2) = polloss(fv_tr,fv_rcv,pos_rcv,ax_rcv,pos_tr);

rho =

0 0

2-188

polloss

There is no polarization loss at either position because the spherical
basis vectors of each antenna are parallel to their counterparts and the
polarization vectors are the same.

Plot Polarization Loss as Receiving Antenna Rotates

Specifying identical transmitter and receiver polarizations, plot the loss
as the local receiving antenna axes rotate around the -axis.

fv_tr = [1;0];
fv_rcv = [1;0];

The position of the transmitting antenna is at the origin and its local
axes align with the global coordinate system. The position of the
receiving antenna is 100 meters along the global -axis. However, its
local -axis points towards the transmitting antenna.

pos_tr = [0;0;0];
axes_tr = azelaxes(0,0);
pos_rcv = [100;0;0];
axes_rcv0 = rotz(180)*azelaxes(0,0);

Rotate the receiving antenna around its local -axis in one-degree
increments. Compute the loss for each angle.

angles = [0:1:359];
n = size(angles,2);
rho = zeros(1,n); % Initialize space
for k = 1:n

axes_rcv = rotx(angles(k))*axes_rcv0;
rho(k) = polloss(fv_tr,fv_rcv,pos_tr,axes_tr,...

pos_rcv,axes_rcv);
end

Plot the polarization loss.

hp = plot(angles,rho); hax = get(hp,'parent');
set(hax,'xlim',[0,360]);
xticks = (0:(n-1))*45;

2-189

polloss

set(hax,'xtick',xticks);
grid;
title('Polarization loss versus receiving antenna rotation')
xlabel('Rotation angle (degrees)'); ylabel('Loss (dB)');

The angle-loss plot shows nulls (Inf dB) at 90 degrees and 270 degrees
where the polarizations are orthogonal.

2-190

polloss

Definitions Polarization Loss Due to Field and Receiver Mismatch

Loss occurs when a receiver is not matched to the polarization of an
incident electromagnetic field.

In the case of the polarization of a field emitted by a transmitting
antenna, first, look at the far zone of the transmitting antenna, as
shown in the following figure. At this location―which is the location of
the receiving antenna―the electromagnetic field is orthogonal to the
direction from transmitter to receiver.

You can represent the transmitted electromagnetic field, fv_tr, by
the components of a vector with respect to a spherical basis of the
transmitter’s local coordinate system. The orientation of this basis
depends on its direction from the origin. The direction is specified
by the azimuth and elevation of the receiving antenna with respect
to the transmitter’s local coordinate system. Then, the transmitter’s
polarization, in terms of the spherical basis vectors of the transmitter’s
local coordinate system, is

E e e P  E E EH az V el imˆ ˆ

In the same manner, the receiver’s polarization vector, fv_rcv, is
defined with respect to a spherical basis in the receiver’s local coordinate
system. Now, the azimuth and elevation specify the transmitter’s
position with respect to the receiver’s local coordinate system. You can
write the receiving antennas polarization in terms of the spherical basis
vectors of the receiver’s local coordinate system:

P e e   P PH az V elˆ ˆ

This figure shows the construction of the different transmitter and
receiver local coordinate systems. It also shows the spherical basis
vectors with which to write the field components.

2-191

polloss

x

y

z

z'

x'R
êaz

êel

el

az

êel'

êaz'

el'

az

The polarization loss is the projection (or dot product) of the normalized
transmitted field vector onto the normalized receiver polarization
vector. Notice that the loss occurs because of the mismatch in direction
of the two vectors not in their magnitudes. Because the vectors are

2-192

polloss

defined in different coordinate systems, they must be converted to
the global coordinate system in order to form the projection. The
polarization loss is defined by:

 
| |

| || |

E P

E P
i

i

2

2 2

References
[1] Mott, H. Antennas for Radar and Communications.John Wiley &
Sons, 1992.

See Also polellip | stokes

2-193

polratio

Purpose Ratio of vertical to horizontal linear polarization components of a field

Syntax p = polratio(fv)

Description p = polratio(fv) returns the ratio of the vertical to horizontal
component of the field or set of fields contained in fv.

Each column of fv contains the linear polarization components of a field
in the form [Eh;Ev], where Eh and Ev are the field’s linear horizontal
and vertical polarization components. The expression of a field in terms
of a two-row vector of linear polarization components is called the Jones
vector formalism. The argument fv can refer to either the electric or
magnetic part of an electromagnetic wave.

Each entry in p contains the ratio Ev/Eh of the components of fv.

Input
Arguments

fv - Field vector in linear component representation
2-by-N complex-valued matrix

Field vector in linear component representation specified as a 2-by-N
complex-valued matrix. Each column of fv contains an instance of
a field specified by [Eh;Ev], where Eh and Ev are the field’s linear
horizontal and vertical polarization components. Two rows of the same
column cannot both be zero.

Example: [2 , i; i, 1]

Data Types
double
Complex Number Support: Yes

Output
Arguments

p - Polarization ratio
1-by-N complex-valued row vector

Polarization ratio returned as a 1-by-N complex-valued row vector. p
contains the ratio of the components of the second row of fv to the first
row, Ev/Eh.

2-194

polratio

Examples Polarization Ratio for 45° Linearly Polarized Field

Determine the polarization ratio for a linearly polarized field (when the
horizontal and vertical components of a field have the same phase).

fv = [2 ; 2];
p = polratio(fv)

p =

1

The resulting polarization ratio is real. The components also have equal
amplitudes so the polarization ratio is unity.

Polarization Ratios for Two Fields

Pass two fields via a single matrix. The first field is [2;i], while the
second is [i;1].

fv = [2 , i; i, 1];
p = polratio(fv)

p =

0 + 0.5000i 0 - 1.0000i

Polarization Ratio for Vertically Polarized Field

Determine the polarization ratio for a vertically polarized field (when
the horizontal component of the field vanishes).

fv = [0 ; 2];
p = polratio(fv)

p =

Inf

The polarization ratio is infinite as expected from Ev/Eh.

2-195

polratio

References
[1] Mott, H., Antennas for Radar and Communications, John Wiley &
Sons, 1992.

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley
& Sons, 1998, pp. 299–302

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge:
Cambridge University Press, 1999, pp 25–32.

See Also circpol2pol | pol2circpol | polellip | stokes

2-196

polsignature

Purpose Copolarization and cross-polarization signatures

Syntax resp = polsignature(rcsmat)
resp = polsignature(rcsmat,type)
resp = polsignature(rcsmat,type,epsilon)
resp = polsignature(rcsmat,type,epsilon,tau)

polsignature(___)

Description resp = polsignature(rcsmat) returns the normalized radar
cross-section copolarization (co-pol) signature, resp (in square meters),
determined from the scattering cross section matrix, rcsmat of
an object. The signature is a function of the transmitting antenna
polarization, specified by the ellipticity angle and the tilt angle of the
polarization ellipse. In this syntax case, the ellipticity angle takes the
values [-45:45] and the tilt angle takes the values [-90:90]. The
output resp is a 181-by-91 matrix whose elements correspond to the
signature at each ellipticity angle-tilt angle pair.

resp = polsignature(rcsmat,type), in addition, specifies the
polarization signature type as one of 'c'|'x', where 'c' creates
the copolarization signature and 'x' creates the cross-polarization
(cross-pol) signature. The default value of this parameter is 'c'. The
output resp is a 181-by-91 matrix whose elements correspond to the
signature at each ellipticity angle-tilt angle pair. This syntax can use
the input arguments in the previous syntax.

resp = polsignature(rcsmat,type,epsilon), in addition, specifies
the transmit antenna polarization’s ellipticity angle (in degrees) as a
length-M vector. The angle epsilon must lie between –45° and 45°.
The argument resp is a 181-by-M matrix whose elements correspond to
the signature at each ellipticity angle-tilt angle pair. This syntax can
use any of the input arguments in the previous syntaxes.

2-197

polsignature

resp = polsignature(rcsmat,type,epsilon,tau), in addition,
specifies the tilt angle of the polarization ellipse of the transmitted
wave (in degrees) as a length-N vector. The angle tau must be between
–90° and 90°. The signature, resp, is represented as a function of
the transmitting antenna polarization. The transmitting antenna
polarization is characterized by the ellipticity angle, epsilon, and the
tilt angle, tau. The argument resp is a N-by-M matrix whose elements
correspond to the signature at each ellipticity angle-tilt angle pair. This
syntax can use any of the input arguments in the previous syntaxes.

polsignature(___) plots a three dimensional surface using any of
the syntax forms specified above.

Input
Arguments

rcsmat - Radar cross-section scattering matrix
2-by-2 complex-valued matrix

Radar cross-section scattering matrix (RCSM) of an object specified as
a 2-by-2, complex-valued matrix. The radar cross-section scattering
matrix describes the polarization of a scattered wave as a function of
the polarization of an incident wave upon a target. The response to an
incident wave can be construct from the individual responses to the
incident field’s horizontal and vertical polarization components. These
components are taken with respect to the transmit antenna or array
local coordinate system. The scattered wave can be decomposed into
horizontal and vertical polarization components with respect to the
receive antenna or array local coordinate system. The matrix RCSM
contains four components [rcs_hh rcs_hv;rcs_vh rcs_vv] where
each component is the radar cross section defined by the polarization of
the transmit and receive antennas.

• rcs_hh – Horizontal response due to horizontal transmit polarization
component

• rcs_hv – Horizontal response due to vertical transmit polarization
component

• rcs_vh – Vertical response due to horizontal transmit polarization
component

2-198

polsignature

• rcs_vv – Vertical response due to vertical transmit polarization
component

In the monostatic radar case, when the wave is backscattered, the
RCSM matrix is symmetric.

Example: [-1,1i;1i,1]

Data Types
double
Complex Number Support: Yes

type - Polarization signature type
'c' (default) | Single character 'c'|'x'

Polarization signature type of the scattered wave specified by a single
character: 'c' denoting the copolarized signature or 'x' denoting the
cross-polarized signature.

Example: 'x'

Data Types
char

epsilon - Ellipticity angle of the polarization ellipse of the
transmitted wave
[-45:45] (default) | scalar or 1-by-M real-valued row vector

Ellipticity angle of the polarization ellipse of the transmitted wave
specified as a length-M vector. Units are degrees. The ellipticity angle
describes the shape of the ellipse. By definition, the tangent of the
ellipticity angle is the signed ratio of the semiminor axis to semimajor
axis of the polarization ellipse. Since the absolute value of this ratio
cannot exceed unity, the ellipticity angle lies between ±45°.

Example: [-45:0.5:45]

Data Types
double

tau - Tilt angle of the polarization ellipse of the transmitted
wave

2-199

polsignature

[-90:90] (default) | scalar or 1-by-N real-valued row vector.

Tilt angle of the polarization ellipse of the transmitted wave specified
as a length-N vector. Units are degrees. The tilt angle is defined as the
angle between the semimajor axis of the ellipse and the x-axis. Because
the ellipse is symmetrical, an ellipse with a tilt angle of 100° is the
same ellipse as one with a tilt angle of –80°. Therefore, the tilt angle
need only be specified between ±90°.

Example: [-30:2:30]

Data Types
double

Output
Arguments

resp - Normalized magnitude response
scalar or N-by-M real-valued matrix.

Normalized magnitude response returned as a scalar or N-by-M,
real-valued matrix having values between 0 and 1. resp returns a
value for each ellipticity-tilt angle pair.

Examples Copolarization Signature of a Dihedral

Use the default values of this function to create a matrix of
copolarization responses to a dihedral object. Specify the ellipticity
angle values as [-45:45] and the tilt angle values as [-90:90]. Then,
draw the response matrix as an image.

rscmat = [-1,0;0,1];
resp = polsignature(rscmat);
el = [-45:45];
tilt = [-90:90];
imagesc(el,tilt,resp); ylabel('Tilt (degrees)');
xlabel('Ellipticity Angle (degrees)'), axis image
set(gca,'xtick',[-45:15:45],'ytick',[-90:15:90]);
title('Co-polarization signature of dihedral');
colorbar;

2-200

polsignature

Cross-Polarization Signature of a Dihedral

Set the type argument to 'x' to create a cross-polarization response
matrix for a dihedral object. Use the default values of ellipticity angles,

2-201

polsignature

[-45:45], and tilt angles, [-90:90]. Then, draw the response matrix
as an image.

rscmat = [-1,0;0,1];
resp = polsignature(rscmat,'x');
el = [-45:45];
tilt = [-90:90];
imagesc(el,tilt,resp); ylabel('Tilt (degrees)');
xlabel('Ellipticity Angle (degrees)'), axis image
set(gca,'xtick',[-45:15:45],'ytick',[-90:15:90]);
title('Cross-polarization signature of dihedral');
colorbar;

2-202

polsignature

Signatures for Linear Polarization with Varied Tilt Angles

Set the ellipticity angle to zero, and vary the tilt angle from -90° to +90°
to generate all possible linear polarization directions. Then, plot both
the copolarization and cross-polarization signatures.

2-203

polsignature

rscmat = [-1,0;0,1];
el = [0];
respc = polsignature(rscmat,'c',el);
respx = polsignature(rscmat,'x',el);
tilt = [-90:90];
plot(tilt,respc,'b',tilt,respx,'r');
set(gca,'xlim',[-90,90],'xtick',[-90:15:90])
legend('Co-polarization','Cross-polarization');
title('Signatures for linear polarization');
xlabel('Tilt angle (degrees)');
ylabel('Signature');

2-204

polsignature

Copolarization Signature of Dihedral for Right and Left
Circular Polarization

Specify right and left circular polarizations. The RCSM for a dihedral
is diagonal.

2-205

polsignature

rscmat = [-1,0;0,1];
el = [-45, 45];
tilt = 0;
respc = polsignature(rscmat,'c',el,tilt);
respx = polsignature(rscmat,'x',el,tilt);

respc =

1 1
respx =

1 1

The responses of the dihedral are the same for each polarization.

Surface Plot of Copolarization Signature of a More General
Target

Use a general RCSM matrix to create a 3-D surface plot.

rscmat = [1i*2,0.5; 0.5, -1i];
el = [-45:45];
tilt = [-90:90];
polsignature(rscmat,'c',el,tilt);

2-206

polsignature

Definitions Scattering Cross-Section Matrix

Scattering cross-section matrix determines response of an object to
incident polarized electromagnetic field.

2-207

polsignature

When a polarized plane wave is incident on an object, the amplitude
and polarization of the scattered wave may change with respect to the
incident wave polarization. The polarization may depend upon the
direction in which the scattered wave is observed. The exact way that
the polarization changes depends upon the properties of the scattering
object. The quantity describing the response of an object to the incident
field is called the scattering cross-section matrix, S. The scattering
matrix can be measured as follows: when a unit amplitude horizontally
polarized wave is scattered, both a horizontal and vertical scattered
component are produced. Call these two components SHH and SVH. These
are complex numbers containing the amplitude and phase changes from
the incident wave. Similarly, when a unit amplitude vertically polarized
wave is scattered, the horizontal and vertical scattered component
produced are SHV and SVV. Because any incident field can be decomposed
into horizontal and vertical components, stack these quantities into a
matrix and write the scattered field in terms of the incident field

E

E

S S
S S

E

E
H
sc

V
sc

HH VH

HV VV

H
inc

V
inc

()

()

()

()















































S
E

E
H
inc

V
inc

()

()

The scattering cross section matrix depends upon the angles that the
incident and scattered fields make with the object. When the incident
field is backscattered to the transmitting antenna, the scattering
matrix is symmetric.

Polarization Signature

Polarization signature for visualizing scattering cross-section matrix.

To understand how the scattered wave depends upon the polarization
of the incident wave, an examination of all possible scattered field
polarizations for each incident polarization is required. Because this
amount of data is difficult to visualize, you can look at two particular
scattered polarizations:

• Choose one polarization that has the same polarization as the
incident field (copolarization)

2-208

polsignature

• Choose a second one that is orthogonal to the polarization of the
incident field (cross-polarization)

Both the incident and orthogonal polarization states can be specified in

terms of the tilt angle-ellipticity angle pair  ,  . From the incident
field tilt and ellipticity angles, the unit incident polarization vector
can be expressed as

E

E j
H
inc

V
inc

()

()

cos sin

sin cos

cos

sin




























 
 








while the orthogonal polarization vector is

E

E j
H
inc

V
inc

()

()

sin cos
cos sin

cos
si


















 










 

 
 


nn











To form the copolarization signature, use the RCSM matrix, S, to
compute:

P E E S
E

E
co

H
inc

V
inc H

inc

V
inc

() () () * ()

()
 

















where []* denotes complex conjugation. For the cross-polarization
signature, compute

P E E S
E

E
cross

H
inc

V
inc H

inc

V
inc

() () () * ()

()
 

















 

The output of this function is the absolute value of each signature
normalized by its maximum value.

2-209

polsignature

References
[1] Mott, H. Antennas for Radar and Communications.John Wiley &
Sons, 1992.

[2] Fawwaz, U. and C. Elachi. Radar Polarimetry for Geoscience
Applications. Artech House, 1990.

[3] Lee, J. and E. Pottier. Polarimetric Radar Imaging: From Basics to
Applications. CRC Press, 2009.

See Also polellip | polloss | stokes

2-210

pulsint

Purpose Pulse integration

Syntax Y = pulsint(X)
Y = pulsint(X,METHOD)

Description Y = pulsint(X) performs video (noncoherent) integration of the pulses
in X and returns the integrated output in Y. Each column of X is one
pulse.

Y = pulsint(X,METHOD) performs pulse integration using the specified
method. METHOD is 'coherent' or 'noncoherent'.

Input
Arguments

X

Pulse input data. Each column of X is one pulse.

METHOD

Pulse integration method. METHOD is the method used to integrate the
pulses in the columns of X. Valid values of METHOD are 'coherent' and
'noncoherent'. The strings are not case sensitive.

Default: 'noncoherent'

Output
Arguments

Y

Integrated pulse. Y is an N-by-1 column vector where N is the number
of rows in the input X.

Definitions Coherent Integration

Let Xij denote the (i,j)-th entry of an M-by-N matrix of pulses X.

The coherent integration of the pulses in X is:

Y Xi ij
j

N





1

2-211

pulsint

Noncoherent (video) Integration

Let Xij denote the (i,j)-th entry of an M-by-N matrix of pulses X.

The noncoherent (video) integration of the pulses in X is:

Y Xi
j

ij

N



| |

1

2

Examples Noncoherently integrate 10 pulses.

x = repmat(sin(2*pi*(0:99)'/100),1,10)+0.1*randn(100,10);
y = pulsint(x);
subplot(211), plot(abs(x(:,1)));
ylabel('Magnitude');
title('First Pulse');
subplot(212), plot(abs(y));
ylabel('Magnitude');
title('Integrated Pulse');

2-212

pulsint

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also phased.MatchedFilter

2-213

radarEquationCalculator

Purpose Radar equation calculator

Description The Radar Equation Calculator app is a tool for solving the basic
radar equation for monostatic or bistatic radar systems. The radar
equation relates target range, transmitted power and received signal
SNR. Using this app, you can solve for any one of these three quantities.
If you know the transmit power of your radar and the desired received
SNR, you can solve for the maximum target range. If you know the
target range and desired received SNR, you can compute how much
power you need to transmit. Finally, if you know the range and transmit
power, you can calculate the received SNR value.

After you choose the type of solution, set other parameters to build
a complete model. The principal parameters to specify are target
cross-section, wavelength, antenna gains, noise temperature, and
overall system losses.

Examples Maximum Detection Range of a Monostatic Radar

Compute the maximum detection range of a 10 GHz, 1 kW, monostatic
radar with a 40 dB antenna gain and a detection threshold of 10 dB.
From the Calculation Type drop-down list, choose Target Range as
the solution and choose Configuration as monostatic. Enter 40 dB
for the antenna Gain, and set the Wavelength to 3 cm. Set the SNR
detection threshold parameter to 10 dB. Assuming the target is a large
airplane, set the Target Radar Cross Section value to 100 m2. Next,
specify the Peak Transmit Power as 1 kW and the Pulse Width as 2
µs. Finally, assume a total of 5 dB System Losses.

2-214

radarEquationCalculator

The maximum target detection range is 92 km.

2-215

radarEquationCalculator

Maximum Detection Range of a Monostatic Radar Using
Multiple Pulses

Continue with the results from the previous example. Use multiple
pulses to reduce the transmitted power while maintaining the same
maximum target range. Clicking on the arrows to the right of the SNR
label opens the Detection Specifications for SNR menu. There,
set the Probability of Detection to 0.95, the Probability of False
Alarm to 10–6, and the Number of Pulses to 4. Then, reduce the Peak
Transmit Power to 0.75 kW. Assume a nonfluctuating target model,
i.e., the Swerling Case Number is 0.

2-216

radarEquationCalculator

2-217

radarEquationCalculator

The maximum detection range is approximately the same as in the
previous example, but the transmitted power is reduced by 25%.

Maximum Detection Range of Bistatic Radar System

Solve for the geometric mean range of a target for a bistatic radar
system. Specify the Calculation Type as Target Range and
Configuration as bistatic. Next, provide a Transmitter Gain and
a Receiver Gain parameter, instead of the single gain needed in the
monostatic case.

2-218

radarEquationCalculator

Alternatively, to achieve a particular probability of detection and
probability of false alarm, open theDetection Specifications for SNR

2-219

radarEquationCalculator

menu. Enter values for Probability of Detection and Probability of
False Alarm, Number of Pulses, and Swerling Case Number.

2-220

radarEquationCalculator

2-221

radarEquationCalculator

Required Transmit Power for a Bistatic Radar

Compute the required peak transmit power of a 10 GHz, bistatic
X-band radar for a 80 km total bistatic range, and 10 dB received SNR.
The system has a 40 dB transmitter gain and a 20 dB receiver gain.
The required receiver SNR is 10 dB. From the Calculation Type
drop-down list, choose Peak Transmit Power as the solution type and
choose Configuration as bistatic. From the system specifications,
set Transmitter Gain to 40 dB and Receiver Gain to 20 dB. Set
the SNR detection threshold to 10 dB and the Wavelength to 0.3 m.
Assume the target is a fighter aircraft having a Target Radar Cross
Section value of 2 m2. Choose Range from Transmitter as 50 km,
and Range from Receiver as 30 km. Finally, set the Pulse Width to
2 µs and the System Losses to 0 dB.

2-222

radarEquationCalculator

The required Peak Transmit Power is about 0.5 kW.

2-223

radarEquationCalculator

Receiver SNR for a Monostatic Radar

Compute the received SNR for a monostatic radar with 1 kW peak
transmit power with a target at a range of 2 km. Assume a 2 GHz
radar frequency and 20 dB antenna gain. From the Calculation
Type drop-down list, choose SNR as the solution type and set the
Configuration as monostatic. Set the Gain to 20, the Peak
Transmit Power to 1 kW, and the Target Range to 2000 m. Set
the Wavelength to 15 cm.

Find the received SNR of a small boat having a Target Radar Cross
Section value of 0.5 m2. The Pulse Width is 1 µs and System Losses
are 0 dB.

2-224

radarEquationCalculator

See Also “Radar Equation Theory”

2-225

radareqpow

Purpose Peak power estimate from radar equation

Syntax Pt = radareqpow(lambda,tgtrng,SNR,Tau)
Pt = radareqpow(...,Name,Value)

Description Pt = radareqpow(lambda,tgtrng,SNR,Tau) estimates the peak
transmit power required for a radar operating at a wavelength of
lambda meters to achieve the specified signal-to-noise ratio SNR in
decibels for a target at a range of tgtrng meters. The target has a
nonfluctuating radar cross section (RCS) of 1 square meter.

Pt = radareqpow(...,Name,Value) estimates the required peak
transmit power with additional options specified by one or more
Name,Value pair arguments.

Input
Arguments

lambda

Wavelength of radar operating frequency (in meters). The wavelength
is the ratio of the wave propagation speed to frequency. For
electromagnetic waves, the speed of propagation is the speed of light.
Denoting the speed of light by c and the frequency (in hertz) of the wave
by f, the equation for wavelength is:

 = c
f

tgtrng

Target range in meters. When the transmitter and receiver are
colocated (monostatic radar), tgtrng is a real-valued positive scalar.
When the transmitter and receiver are not colocated (bistatic radar),
tgtrng is a 1-by-2 row vector with real-valued positive elements. The
first element is the target range from the transmitter, and the second
element is the target range from the receiver.

SNR

The minimum output signal-to-noise ratio at the receiver in decibels.

2-226

radareqpow

Tau

Single pulse duration in seconds.

Name-Value Pair Arguments

’Gain’

Transmitter and receiver gain in decibels (dB). When the transmitter
and receiver are colocated (monostatic radar), Gain is a real-valued
scalar. The transmit and receive gains are equal. When the transmitter
and receiver are not colocated (bistatic radar), Gain is a 1-by-2 row
vector with real-valued elements. The first element is the transmitter
gain and the second element is the receiver gain.

Default: 20

’Loss’

System loss in decibels (dB). Loss represents a general loss factor
that comprises losses incurred in the system components and in the
propagation to and from the target.

Default: 0

’RCS’

Radar cross section in square meters. The target RCS is nonfluctuating.

Default: 1

’Ts’

System noise temperature in kelvin. The system noise temperature is
the product of the system temperature and the noise figure.

Default: 290 kelvin

2-227

radareqpow

Output
Arguments

Pt

Transmitter peak power in watts.

Definitions Point Target Radar Range Equation

The point target radar range equation estimates the power at the input
to the receiver for a target of a given radar cross section at a specified
range. The model is deterministic and assumes isotropic radiators. The
equation for the power at the input to the receiver is

P
P G G

R R L
r

t t r

t r

=
 



2

3 2 24()

where the terms in the equation are:

• Pt — Peak transmit power in watts

• Gt — Transmitter gain in decibels

• Gr — Receiver gain in decibels. If the radar is monostatic, the
transmitter and receiver gains are identical.

• λ — Radar operating frequency wavelength in meters

• σ— Target’s nonfluctuating radar cross section in square meters

• L — General loss factor in decibels that accounts for both system
and propagation loss

• Rt — Range from the transmitter to the target

• Rr— Range from the receiver to the target. If the radar is monostatic,
the transmitter and receiver ranges are identical.

Terms expressed in decibels such as the loss and gain factors enter the
equation in the form 10x/10 where x denotes the variable. For example,
the default loss factor of 0 dB results in a loss term of 100/10=1.

Receiver Output Noise Power

The equation for the power at the input to the receiver represents
the signal term in the signal-to-noise ratio. To model the noise term,

2-228

radareqpow

assume the thermal noise in the receiver has a white noise power
spectral density (PSD) given by:

P f kT() =

where k is the Boltzmann constant and T is the effective noise
temperature. The receiver acts as a filter to shape the white noise
PSD. Assume that the magnitude squared receiver frequency response
approximates a rectangular filter with bandwidth equal to the reciprocal
of the pulse duration, 1/τ. The total noise power at the output of the
receiver is:

N
kTFn=


where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise
factor is referred to as the system temperature and is denoted by Ts,
so that Ts=TFn .

Receiver Output SNR

Using the equation for the received signal power in “Point Target Radar
Range Equation” on page 2-228 and the output noise power in “Receiver
Output Noise Power” on page 2-228, the receiver output SNR is:

P
N

P G G

kT R R L
r t t r

s t r

=
  



2

3 2 24()

Solving for the peak transmit power

P
P kT R R L

N G G
t

r s t r

t r

=
()4 3 2 2

2


  

Examples Estimate the required peak transmit power required to achieve a
minimum SNR of 6 decibels for a target at a range of 50 kilometers. The

2-229

radareqpow

target has a nonfluctuating RCS of 1 square meter. The radar operating
frequency is 1 gigahertz. The pulse duration is 1 microsecond.

lambda = physconst('LightSpeed')/1e9;
tgtrng = 50e3;
tau = 1e-6;
SNR = 6;
Pt = radareqpow(lambda,tgtrng,SNR,tau);

Estimate the required peak transmit power required to achieve a
minimum SNR of 10 decibels for a target with an RCS of 0.5 square
meters at a range of 50 kilometers. The radar operating frequency is 10
gigahertz. The pulse duration is 1 microsecond. Assume a transmit and
receive gain of 30 decibels and an overall loss factor of 3 decibels.

lambda = physconst('LightSpeed')/10e9;
Pt = radareqpow(lambda,50e3,10,1e-6,'RCS',0.5,...

'Gain',30,'Ts',300,'Loss',3);

Estimate the required peak transmit power for a bistatic radar to
achieve a minimum SNR of 6 decibels for a target with an RCS of 1
square meter. The target is 50 kilometers from the transmitter and
75 kilometers from the receiver. The radar operating frequency is 10
gigahertz and the pulse duration is 10 microseconds. The transmitter
and receiver gains are 40 and 20 dB respectively.

lambda = physconst('LightSpeed')/10e9;
SNR = 6;
tau = 10e-6;
TxRng = 50e3; RvRng = 75e3;
TxRvRng =[TxRng RvRng];
TxGain = 40; RvGain = 20;
Gain = [TxGain RvGain];
Pt = radareqpow(lambda,TxRvRng,SNR,tau,'Gain',Gain);

2-230

radareqpow

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

[3] Willis, N. J. Bistatic Radar. Raleigh, NC: SciTech Publishing, 2005.

See Also phased.Transmitter | phased.ReceiverPreamp | noisepow |
radareqrng | radareqsnr | systemp

2-231

radareqrng

Purpose Maximum theoretical range estimate

Syntax maxrng = radareqrng(lambda,SNR,Pt,Tau)
maxrng = radareqrng(...,Name,Value)

Description maxrng = radareqrng(lambda,SNR,Pt,Tau) estimates the theoretical
maximum detectable range maxrng for a radar operating with a
wavelength of lambda meters with a pulse duration of Tau seconds.
The signal-to-noise ratio is SNR decibels, and the peak transmit power
is Pt watts.

maxrng = radareqrng(...,Name,Value) estimates the theoretical
maximum detectable range with additional options specified by one or
more Name,Value pair arguments.

Input
Arguments

lambda

Wavelength of radar operating frequency (in meters). The wavelength
is the ratio of the wave propagation speed to frequency. For
electromagnetic waves, the speed of propagation is the speed of light.
Denoting the speed of light by c and the frequency (in hertz) of the wave
by f, the equation for wavelength is:

 = c
f

Pt

Transmitter peak power in watts.

SNR

The minimum output signal-to-noise ratio at the receiver in decibels.

Tau

Single pulse duration in seconds.

2-232

radareqrng

Name-Value Pair Arguments

’Gain’

Transmitter and receiver gain in decibels (dB). When the transmitter
and receiver are colocated (monostatic radar), Gain is a real-valued
scalar. The transmit and receive gains are equal. When the transmitter
and receiver are not colocated (bistatic radar), Gain is a 1-by-2 row
vector with real-valued elements. The first element is the transmitter
gain, and the second element is the receiver gain.

Default: 20

’Loss’

System loss in decibels (dB). Loss represents a general loss factor
that comprises losses incurred in the system components and in the
propagation to and from the target.

Default: 0

’RCS’

Radar cross section in square meters. The target RCS is nonfluctuating.

Default: 1

’Ts’

System noise temperature in kelvins. The system noise temperature is
the product of the system temperature and the noise figure.

Default: 290 kelvin

’unitstr’

The units of the estimated maximum theoretical range. unitstr is
one of the following strings:

• 'km' kilometers

2-233

radareqrng

• 'm' meters

• 'nmi' nautical miles (U.S.)

Default: 'm'

Output
Arguments

maxrng

The estimated theoretical maximum detectable range. The units of
maxrng depends on the value of unitstr. By default maxrng is in
meters. For bistatic radars, maxrng is the geometric mean of the range
from the transmitter to the target and the receiver to the target.

Definitions Point Target Radar Range Equation

The point target radar range equation estimates the power at the input
to the receiver for a target of a given radar cross section at a specified
range. The model is deterministic and assumes isotropic radiators. The
equation for the power at the input to the receiver is

P
P G G

R R L
r

t t r

t r

=
 



2

3 2 24()

where the terms in the equation are:

• Pt — Peak transmit power in watts

• Gt — Transmitter gain in decibels

• Gr — Receiver gain in decibels. If the radar is monostatic, the
transmitter and receiver gains are identical.

• λ — Radar operating frequency wavelength in meters

• σ— Target’s nonfluctuating radar cross section in square meters

• L — General loss factor in decibels that accounts for both system
and propagation loss

• Rt — Range from the transmitter to the target

2-234

radareqrng

• Rr— Range from the receiver to the target. If the radar is monostatic,
the transmitter and receiver ranges are identical.

Terms expressed in decibels, such as the loss and gain factors, enter the
equation in the form 10x/10 where x denotes the variable. For example,
the default loss factor of 0 dB results in a loss term of 100/10=1.

Receiver Output Noise Power

The equation for the power at the input to the receiver represents
the signal term in the signal-to-noise ratio. To model the noise term,
assume the thermal noise in the receiver has a white noise power
spectral density (PSD) given by:

P f kT() =

where k is the Boltzmann constant and T is the effective noise
temperature. The receiver acts as a filter to shape the white noise
PSD. Assume that the magnitude squared receiver frequency response
approximates a rectangular filter with bandwidth equal to the reciprocal
of the pulse duration, 1/τ. The total noise power at the output of the
receiver is:

N
kTFn=


where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise
factor is referred to as the system temperature. This value is denoted by
Ts, so that Ts=TFn .

Receiver Output SNR

The receiver output SNR is:

P
N

P G G

kT R R L
r t t r

s t r

=
  



2

3 2 24()

You can derive this expression using the following equations:

2-235

radareqrng

• Received signal power in “Point Target Radar Range Equation” on
page 2-234

• Output noise power in “Receiver Output Noise Power” on page 2-235

Theoretical Maximum Detectable Range

For monostatic radars, the range from the target to the transmitter
and receiver is identical. Denoting this range by R, you can express

this relationship as R R Rt r
4 2 2= .

Solving for R

R
NP G G

P kT L
t t r

r s

= (
()

) /  



2

3
1 4

4

For bistatic radars, the theoretical maximum detectable range is the
geometric mean of the ranges from the target to the transmitter and
receiver:

R R
NP G G

P kT L
t r

t t r

r s

= (
()

) /  



2

3
1 4

4

Examples Estimate the theoretical maximum detectable range for a monostatic
radar operating at 10 GHz using a pulse duration of 10 µs. Assume the
output SNR of the receiver is 6 dB.

lambda = physconst('LightSpeed')/10e9;
SNR = 6;
tau = 10e-6;
Pt = 1e6;
maxrng = radareqrng(lambda,SNR,Pt,tau);

Estimate the theoretical maximum detectable range for a monostatic
radar operating at 10 GHz using a pulse duration of 10 µs. The target

2-236

radareqrng

RCS is 0.1 square meters. Assume the output SNR of the receiver is 6
dB. The transmitter-receiver gain is 40 dB. Assume a loss factor of 3 dB.

lambda = physconst('LightSpeed')/10e9;
SNR = 6;
tau = 10e-6;
Pt = 1e6;
RCS = 0.1;
Gain = 40;
Loss = 3;
maxrng2 = radareqrng(lambda,SNR,Pt,tau,'Gain',Gain,...

'RCS',RCS,'Loss',Loss);

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

[3] Willis, N. J. Bistatic Radar. Raleigh, NC: SciTech Publishing, 2005.

See Also phased.Transmitter | phased.ReceiverPreamp | noisepow |
radareqpow | radareqsnr | systemp

2-237

radareqsnr

Purpose SNR estimate from radar equation

Syntax SNR = radareqsnr(lambda,tgtrng,Pt,tau)
SNR = radareqsnr(...,Name,Value)

Description SNR = radareqsnr(lambda,tgtrng,Pt,tau) estimates the output
signal-to-noise ratio (SNR) at the receiver based on the wavelength
lambda in meters, the range tgtrng in meters, the peak transmit
power Pt in watts, and the pulse width tau in seconds.

SNR = radareqsnr(...,Name,Value) estimates the output SNR at the
receiver with additional options specified by one or more Name,Value
pair arguments.

Input
Arguments

lambda

Wavelength of radar operating frequency in meters. The wavelength
is the ratio of the wave propagation speed to frequency. For
electromagnetic waves, the speed of propagation is the speed of light.
Denoting the speed of light by c and the frequency in hertz of the wave
by f, the equation for wavelength is:

 = c
f

tgtrng

Target range in meters. When the transmitter and receiver are
colocated (monostatic radar), tgtrng is a real-valued positive scalar.
When the transmitter and receiver are not colocated (bistatic radar),
tgtrng is a 1-by-2 row vector with real-valued positive elements. The
first element is the target range from the transmitter, and the second
element is the target range from the receiver.

Pt

Transmitter peak power in watts.

2-238

radareqsnr

tau

Single pulse duration in seconds.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Gain’

Transmitter and receiver gain in decibels (dB). When the transmitter
and receiver are colocated (monostatic radar), Gain is a real-valued
scalar. The transmit and receive gains are equal. When the transmitter
and receiver are not colocated (bistatic radar), Gain is a 1-by-2 row
vector with real-valued elements. The first element is the transmitter
gain, and the second element is the receiver gain.

Default: 20

’Loss’

System loss in decibels (dB). Loss represents a general loss factor
that comprises losses incurred in the system components and in the
propagation to and from the target.

Default: 0

’RCS’

Target radar cross section in square meters. The target RCS is
nonfluctuating.

Default: 1

’Ts’

2-239

radareqsnr

System noise temperature in kelvin. The system noise temperature is
the product of the effective noise temperature and the noise figure.

Default: 290 kelvin

Output
Arguments

SNR

The estimated output signal-to-noise ratio at the receiver in decibels.
SNR is 10log10(Pr/N). The ratio Pr/N is defined in “Receiver Output SNR”
on page 2-241.

Definitions Point Target Radar Range Equation

The point target radar range equation estimates the power at the input
to the receiver for a target of a given radar cross section at a specified
range. The model is deterministic and assumes isotropic radiators. The
equation for the power at the input to the receiver is

P
P G G

R R L
r

t t r

t r

=
 



2

3 2 24()

where the terms in the equation are:

• Pt — Peak transmit power in watts

• Gt — Transmitter gain in decibels

• Gr — Receiver gain in decibels. If the radar is monostatic, the
transmitter and receiver gains are identical.

• λ — Radar operating frequency wavelength in meters

• σ— Nonfluctuating target radar cross section in square meters

• L— General loss factor in decibels that accounts for both system and
propagation losses

• Rt— Range from the transmitter to the target in meters

• Rr— Range from the receiver to the target in meters. If the radar is
monostatic, the transmitter and receiver ranges are identical.

2-240

radareqsnr

Terms expressed in decibels such as the loss and gain factors enter
the equation in the form 10x/10 where x denotes the variable value in
decibels. For example, the default loss factor of 0 dB results in a loss
term equal to one in the equation (100/10).

Receiver Output Noise Power

The equation for the power at the input to the receiver represents
the signal term in the signal-to-noise ratio. To model the noise term,
assume the thermal noise in the receiver has a white noise power
spectral density (PSD) given by:

P f kT() =

where k is the Boltzmann constant and T is the effective noise
temperature. The receiver acts as a filter to shape the white noise
PSD. Assume that the magnitude squared receiver frequency response
approximates a rectangular filter with bandwidth equal to the reciprocal
of the pulse duration, 1/τ. The total noise power at the output of the
receiver is:

N
kTFn=


where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise
factor is referred to as the system temperature and is denoted by Ts,
so that Ts=TFn .

Receiver Output SNR

The receiver output SNR is:

P
N

P G G

kT R R L
r t t r

s t r

=
  



2

3 2 24()

You can derive this expression using the following equations:

• Received signal power in “Point Target Radar Range Equation” on
page 2-240

2-241

radareqsnr

• Output noise power in “Receiver Output Noise Power” on page 2-241

Examples Estimate the output SNR for a target with an RCS of 1 square meter at
a range of 50 kilometers. The system is a monostatic radar operating at
1 gigahertz with a peak transmit power of 1 megawatt and pulse width
of 0.2 microseconds. The transmitter and receiver gain is 20 decibels
and the system temperature is 290 kelvin.

lambda = physconst('LightSpeed')/1e9;
tgtrng = 50e3;
Pt = 1e6;
tau = 0.2e-6;
snr = radareqsnr(lambda,tgtrng,Pt,tau);

Estimate the output SNR for a target with an RCS of 0.5 square meters
at 100 kilometers. The system is a monostatic radar operating at 10
gigahertz with a peak transmit power of 1 megawatt and pulse width of
1 microsecond. The transmitter and receiver gain is 40 decibels. The
system temperature is 300 kelvin and the loss factor is 3 decibels.

lambda = physconst('LightSpeed')/10e9;
snr = radareqsnr(lambda,100e3,1e6,1e-6,'RCS',0.5,...

'Gain',40,'Ts',300,'Loss',3);

Estimate the output SNR for a target with an RCS of 1 square meter.
The radar is bistatic. The target is located 50 kilometers from the
transmitter and 75 kilometers from the receiver. The radar operating
frequency is 10 gigahertz. The transmitter has a peak transmit
power of 1 megawatt with a gain of 40 decibels. The pulse width is 1
microsecond. The receiver gain is 20 decibels.

lambda = physconst('LightSpeed')/10e9;
tau = 1e-6;
Pt = 1e6;
txrvRng =[50e3 75e3];

2-242

radareqsnr

Gain = [40 20];
snr = radareqsnr(lambda,txrvRng,Pt,tau,'Gain',Gain);

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

[3] Willis, N. J. Bistatic Radar. Raleigh, NC: SciTech Publishing, 2005.

See Also phased.Transmitter | phased.ReceiverPreamp | noisepow |
radareqrng | radareqpow | systemp

2-243

radarvcd

Purpose Vertical coverage diagram

Syntax [vcp,vcpangles] = radarvcd(freq,rfs,anht)
[vcp,vcpangles] = radarvcd(___ ,Name,Value)

radarvcd(___)

Description [vcp,vcpangles] = radarvcd(freq,rfs,anht) calculates the vertical
coverage pattern of a narrowband radar antenna. The “Vertical
Coverage Pattern” on page 2-252 is the radar’s range, vcp, as a function
of elevation angle, vcpangles. The vertical coverage pattern depends
upon three parameters. These parameters are the radar’s maximum
free-space detection range, rfs, the radar frequency, freq, and the
antenna height, anht.

[vcp,vcpangles] = radarvcd(___ ,Name,Value) allows you to
specify additional input parameters as Name-Value pairs. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN). This syntax can use any of the input
arguments in the previous syntax.

radarvcd(___) displays the vertical coverage diagram for a radar
system. The plot is the locus of points ofmaximum radar range as
a function of target elevation. This plot is also known as the Blake
chart. To create this chart, radarvcd invokes the function blakechart
using default parameters. To produce a Blake chart with different
parameters, first call radarvcd to obtain vcp and vcpangles. Then,
call blakechart with user-specified parameters. This syntax can use
any of the input arguments in the previous syntaxes.

Input
Arguments

freq - Radar frequency
real-valued scalar less than 10 GHz

Radar frequency specified as a real-valued scalar less than 10 GHz
(10e9).

2-244

radarvcd

Example: 100e6

Data Types
double

rfs - Free-space range
real-valued scalar

Free-space range specified as a real-valued scalar. Range units are set
by the RangeUnit Name-Value pair.

Example: 100e3

Data Types
double

anht - Radar antenna height
real-valued scalar

Radar antenna height specified as a real-valued scalar. Height units
are set by the HeightUnit Name-Value pair.

Example: 10

Data Types
double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘HeightUnit’, k‘m’

’RangeUnit’ - Radar range units
'km' (default) | 'nmi' | 'mi' | 'ft' | 'm'

2-245

radarvcd

Radar range units denoting kilometers, nautical miles, miles, feet or
meters. This name-value pair specifies the units for the free-space
range argument, rfs, and the output vertical coverage pattern, vcp.

Example: 'mi'

Data Types
char

’HeightUnit’ - Antenna height units
'm' (default) | 'nmi' | 'mi' | 'km' | 'ft'

Antenna height units denoting meters, nautical miles, miles, kilometers,
or feet. This name-value pair specifies the units for the antenna height,
anht, and the 'SurfaceRoughness' name-value pair.

Example: 'm'

Data Types
char

’Polarization’ - Transmitted wave polarization
`H' (default) | 'H' | 'V'

Transmitted wave polarization specified as 'H' for horizontal
polarization and 'V' for vertical polarization.

Example: 'V'

Data Types
char

’SurfaceDielectric’ - Dielectric constant of reflecting surface
frequency dependent model (default) | complex-valued scalar

Dielectric constant of reflecting surface specified as complex-valued
scalar. When omitted, the dielectric constant is taken from a
frequency-dependent seawater dielectric model derived in Blake[1].

Example: 70

2-246

radarvcd

Data Types
double

’SurfaceRoughness’ - Surface roughness
0 (default) | real-valued scalar

Surface roughness specified as a non-negative real scalar. Surface
roughness is a measure of the height variation of the reflecting surface.
The roughness is modeled as a sinusoid wave with crest-to-trough
height given by this value. A value of 0 indicates a smooth surface.
The units for surface roughness height is specified by the value of the
'HeightUnit' Name-Value pair.

Example: 2

Data Types
double

’AntennaPattern’ - Antenna elevation pattern
real-valued N-by-1 column vector

Antenna elevation pattern, specified as a real-valued N-by-1 column
vector. Values for 'AntennaPattern' must be specified together with
values for 'PatternAngles'.

ath = linspace(-pi/2, pi/2, 361);
HPBW = 10*pi/180;
k = 1.39157/sin(HPBW/2);
u = k*sin(ath);
apat = sinc(u/pi);

Example: cosd([90:90])

Data Types
double

’PatternAngles’ - Antenna pattern elevation angles
real-valued N-by-1 column vector

Antenna pattern elevation angles specified as a real-valued N-by-1
column vector. The size of the vector specified by 'PatternAngles'

2-247

radarvcd

must be the same as that specified by 'AntennaPattern'. Angle units
are expressed in degrees and must lie between –90° and 90°. In general,
to properly compute the coverage, the antenna pattern should fill the
whole range from –90° to 90°.

Example: [-90:90]

Data Types
double

’TiltAngle’ - Antenna tilt angle
real-valued scalar

Antenna tilt angle specified as a real-valued scalar. The tilt angle is the
elevation angle of the antenna with respect to the surface. Angle units
are expressed in degrees.

Example: 10

Data Types
double

’MaxElevation’ - Maximum elevation angle
real-valued scalar

Maximum elevation angle, specified as a real-valued scalar. The
maximum elevation angle is the largest angle for which the vertical
coverage pattern is calculated. Angle units are expressed in degrees.

Example: 70

Data Types
double

Output
Arguments

vcp - Vertical coverage pattern
real-valued vector

Vertical coverage pattern returned as a real-valued, K-by-1 column
vector. The vertical coverage pattern is the actual maximum range of
the radar. Each entry of the vertical coverage pattern corresponds to
one of the angles returned in vcpangles.

2-248

radarvcd

vcpangles - Vertical coverage pattern angles
real-valued vector

Vertical coverage pattern angles returned as a K-by-1 column vector.
The angles range from –90° to 90°.

Examples Plot Vertical Coverage Pattern Using Default Parameters

Set the frequency to 100 MHz, the antenna height to 10 m, and the
free-space range to 200 km. The antenna pattern, surface roughness,
antenna tilt angle, and field polarization assume their default values as
specified in the AntennaPattern, SurfaceRoughness, TiltAngle, and
Polarization properties.

Obtain an array of vertical coverage pattern values and angles.

freq = 100e6;
ant_height = 10;
rng_fs = 200;
[vcp,vcpangles] = radarvcd(freq,rng_fs,ant_height);

To see the vertical coverage pattern, omit the output arguments.

freq = 100e6;
ant_height = 10;
rng_fs = 200;
radarvcd(freq,rng_fs,ant_height);

2-249

radarvcd

Vertical Coverage Pattern with Specified Antenna Pattern

Set the frequency to 100 MHz, the antenna height to 10 m, and the
free-space range to 200 km. The antenna pattern is a sinc function with
45° half-power width. The surface roughness is set to 1 m. The antenna
tilt angle is set to 0°, and the field polarization is horizontal.

pat_angles = linspace(-90,90,361)';
pat_u = 1.39157/sind(45/2)*sind(pat_angles);
pat = sinc(pat_u/pi);

2-250

radarvcd

freq = 100e6;
ant_height = 10;
rng_fs = 200;
tilt_ang = 0;
[vcp,vcpangles] = radarvcd(freq,rng_fs,ant_height,...

'RangeUnit','km','HeightUnit','m',...
'AntennaPattern',pat,...
'PatternAngles',pat_angles,...
'TiltAngle',tilt_ang,'SurfaceRoughness',1);

Plot Vertical Coverage Diagram For User-Specified Antenna

Plot the range-height-angle curve (Blake Chart) for a radar with a
user-specified antenna pattern.

Define a sinc-function antenna pattern with a half-power beamwidth of
90 degrees.

pat_angles = linspace(-90,90,361)';
pat_u = 1.39157/sind(90/2)*sind(pat_angles);
pat = sinc(pat_u/pi);

Specify a radar that transmits at 100 MHz. The free-space range is 200
km, the antenna height is 10 meters, the antenna tilt angle is zero
degrees, and the surface roughness is one meter.

freq = 100e6;
ant_height = 10;
rng_fs = 200;
tilt_ang = 0;
surf_roughness = 1;

Create the radar range-height-angle plot.

radarvcd(freq,rng_fs,ant_height,...
'RangeUnit','km','HeightUnit','m',...
'AntennaPattern',pat,...
'PatternAngles',pat_angles,...
'TiltAngle',tilt_ang,...

2-251

radarvcd

'SurfaceRoughness',surf_roughness);

Definitions Vertical Coverage Pattern

The maximum detection range of a radar antenna can differ, depending
on placement. Suppose you place a radar antenna near a reflecting
surface, such as the earth’s land or sea surface and computed maximum
detection range. If you then move the same radar antenna to free space
far from any boundaries, a different maximum detection range would

2-252

radarvcd

result. This is an effect of multi-path interference that occurs when
waves, reflected from the surface, constructively add to or nullify the
direct path signal from the radar to a target. Multipath interference
gives rise to a series of lobes in the vertical plane. The vertical coverage
pattern is the plot of the actual maximum detection range of the radar
versus target elevation and depends upon the maximum free-space
detection range and target elevation angle. See Blake [1].

References
[1] Blake, L.V. Machine Plotting of Radar Vertical-Plane Coverage
Diagrams. Naval Research Laboratory Report 7098, 1970.

See Also blakechart

2-253

radarWaveformAnalyzer

Purpose Radar waveform analyzer

Description The Radar Waveform Analyzer app is a tool for exploring the
properties of various kinds of signals often used in radar and
sonar systems. The app lets you determine the basic performance
characteristics of the following waveforms:

• Rectangular

• Linear FM

• Stepped FM

• Phase-coded

• FMCW
Each waveform has a set of parameters that are unique to its kind. After
you select a signal, the signal parameters menu changes so you can
quickly modify the signal. Parameters you can set include the duration,
pulse-repetition frequency, number of pulse, bandwidth and sample
rate. Changing the propagation speed lets you display properties of
sound waves in air and water, or electromagnetic waves. After you
enter all the information for a signal of interest, the app displays basic
characteristics such as range resolution, Doppler resolution, maximum
and minimum range and maximum Doppler.

The Radar Waveform Analyzer app lets you produce a variety of
plots and images. These are plots of the waveform’s

• Real and imaginary components

• Magnitude and phase

• Spectrum

• Spectrogram

• Representations of the ambiguity function

- Contour

- Surface

- Delay cut

2-254

radarWaveformAnalyzer

- Doppler cut

• Autocorrelation function

Examples Rectangular Waveform

Assume a rectangular waveform. Set the Waveform Type to
Rectangular. An ideal rectangular waveform jumps instantaneously
to a finite value and stays there for some duration. Assume the radar
is designed for a maximum range of 50 km. With this assumption, the
propagation time for a signal to go to that range and return is 333
μs. This means you must allow 333 μs between pulses, equivalent to
a maximum pulse repetition frequency (PRF)) of 3000 Hz. Set the
Pulse Width to 50 μs. With these values, the app displays a 7.5 km
range resolution. The resolution of a rectangular pulse is roughly 1/2
the pulse-width multiplied by the speed of light, which is entered here
in the Propagation Speed field as 300e6 m/s. The Doppler resolution
is approximately the width of the Fourier transform of the pulse. The
same analysis can be used for sonar if you assume a much smaller
speed of propagation, 1500 m/s. The following figure shows the real
and imaginary parts of the waveform. This is the default view on the
View drop-down list.

2-255

radarWaveformAnalyzer

2-256

radarWaveformAnalyzer

Next, you can view the signal spectrum. To do so, select spectrum from
the View drop-down menu.

2-257

radarWaveformAnalyzer

2-258

radarWaveformAnalyzer

2-259

radarWaveformAnalyzer

Do this by setting the Waveform Type to Linear FM. This pulse has
a variable frequency which can either increase or decrease as a linear
function of time. Choose the Sweep Direction as Up, and the Sweep
Bandwidth as 1 MHz. You can see that keeping the same pulse
width as before improves the range resolution to 150 m, as shown in
the following figure.

2-260

radarWaveformAnalyzer

2-261

radarWaveformAnalyzer

2-262

radialspeed

Purpose Relative radial speed

Syntax Rspeed = radialspeed(Pos,V)
Rspeed = radialspeed(Pos,V,RefPos)
Rspeed = radialspeed(Pos,V,RefPos,RefV)

Description Rspeed = radialspeed(Pos,V) returns the radial speed of the given
platforms relative to a reference platform. The platforms have positions
Pos and velocities V. The reference platform is stationary and is located
at the origin.

Rspeed = radialspeed(Pos,V,RefPos) specifies the position of the
reference platform.

Rspeed = radialspeed(Pos,V,RefPos,RefV) specifies the velocity
of the reference platform.

Input
Arguments

Pos

Positions of platforms, specified as a 3-by-N matrix. Each column
specifies a position in the form [x; y; z], in meters.

V

Velocities of platforms, specified as a 3-by-N matrix. Each column
specifies a velocity in the form [x; y; z], in meters per second.

RefPos

Position of reference platform, specified as a 3-by-1 vector. The vector
has the form [x; y; z], in meters.

Default: [0; 0; 0]

RefV

Velocity of reference platform, specified as a 3-by-1 vector. The vector
has the form [x; y; z], in meters per second.

2-263

radialspeed

Default: [0; 0; 0]

Output
Arguments

Rspeed

Radial speed in meters per second, as an N-by-1 vector. Each number in
the vector represents the radial speed of the corresponding platform.
Positive numbers indicate that the platform is approaching the
reference platform. Negative numbers indicate that the platform is
moving away from the reference platform.

Examples Radial Speed of Target Relative to Stationary Platform

Calculate the radial speed of a target relative to a stationary platform.
Assume the target is located at [20; 20; 0] meters and is moving with
velocity [10; 10; 0] meters per second. The reference platform is
located at [1; 1; 0].

rspeed = radialspeed([20; 20; 0],[10; 10; 0],[1; 1; 0]);

See Also phased.Platform | speed2dop

Concepts • “Doppler Shift and Pulse-Doppler Processing”
• “Motion Modeling in Phased Array Systems”

2-264

range2beat

Purpose Convert range to beat frequency

Syntax fb = range2beat(r,slope)
fb = range2beat(r,slope,c)

Description fb = range2beat(r,slope) converts the range of a dechirped linear
FMCW signal to the corresponding beat frequency. slope is the slope
of the FMCW sweep.

fb = range2beat(r,slope,c) specifies the signal propagation speed.

Input
Arguments

r - Range
array of nonnegative numbers

Range, specified as an array of nonnegative numbers in meters.

Data Types
double

slope - Sweep slope
nonzero scalar

Slope of FMCW sweep, specified as a nonzero scalar in hertz per second.

Data Types
double

c - Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per
second.

Data Types
double

2-265

range2beat

Output
Arguments

fb - Beat frequency of dechirped signal
array of nonnegative numbers

Beat frequency of dechirped signal, returned as an array of nonnegative
numbers in hertz. Each entry in fb is the beat frequency corresponding
to the corresponding range in r. The dimensions of fb match the
dimensions of r.

Data Types
double

Definitions Beat Frequency

For an up-sweep or down-sweep FMCW signal, the beat frequency is Ft
– Fr. In this expression, Ft is the transmitted signal’s carrier frequency,
and Fr is the received signal’s carrier frequency.

For an FMCW signal with triangular sweep, the upsweep and
downsweep have separate beat frequencies.

Algorithms The function computes 2*r*slope/c.

Examples Maximum Beat Frequency in FMCW Radar System

Calculate the maximum beat frequency in the received signal of an
upsweep FMCW waveform. Assume that the waveform can detect
a target as far as 18 km and sweeps a 300 MHz band in 1 ms. Also
assume that the target is stationary.

slope = 300e6/1e-3;
r = 18e3;
fb = range2beat(r,slope);

References
[1] Pace, Phillip. Detecting and Classifying Low Probability of Intercept
Radar. Artech House, Boston, 2009.

2-266

range2beat

[2] Skolnik, M.I. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

See Also beat2range | dechirp | rdcoupling | stretchfreq2rng |
phased.FMCWWaveform

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

2-267

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

range2bw

Purpose Convert range resolution to required bandwidth

Syntax bw = range2bw(r)
bw = range2bw(r,c)

Description bw = range2bw(r) returns the bandwidth needed to distinguish two
targets separated by a given range. Such capability is often referred to
as range resolution. The propagation is assumed to be two-way, as in a
monostatic radar system.

bw = range2bw(r,c) specifies the signal propagation speed.

Tips • This function assumes two-way propagation. For one-way
propagation, you can find the required bandwidth by multiplying
the output of this function by 2.

Input
Arguments

r - Target range resolution
array of positive numbers

Target range resolution in meters, specified as an array of positive
numbers.

Data Types
double

c - Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per
second.

Data Types
double

2-268

range2bw

Output
Arguments

bw - Required bandwidth
array of nonnegative numbers

Required bandwidth in hertz, returned as an array of nonnegative
numbers. The dimensions of bware the same as those of r.

Algorithms The function computes c/(2*r).

Examples Pulse Width for Specified Range Resolution

Assume you have a monostatic radar system that uses a rectangular
waveform. Calculate the required pulse width of the waveform so that
the system can achieve a range resolution of 10 m.

r = 10;
tau = 1/range2bw(r);

References
[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also time2range | range2time | phased.FMCWWaveform

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

2-269

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

range2time

Purpose Convert propagation distance to propagation time

Syntax t = range2time(r)
t = range2time(r,c)

Description t = range2time(r) returns the time a signal takes to propagate a
given distance. The propagation is assumed to be two-way, as in a
monostatic radar system.

t = range2time(r,c) specifies the signal propagation speed.

Input
Arguments

r - Signal range
array of nonnegative numbers

Signal range in meters, specified as an array of nonnegative numbers.

Data Types
double

c - Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per
second.

Data Types
double

Output
Arguments

t - Propagation time
array of nonnegative numbers

Propagation time in seconds, returned as an array of nonnegative
numbers. The dimensions of tare the same as those of r.

Algorithms The function computes 2*r/c.

2-270

range2time

Examples PRF for Specified Unambiguous Range

Calculate the required PRF for a monostatic radar system so that it can
have a maximum unambiguous range of 15 km.

r = 15e3;
prf = 1/range2time(r);

References
[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also time2range | range2bw | phased.FMCWWaveform

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

2-271

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

rangeangle

Purpose Range and angle calculation

Syntax [tgtrng,tgtang] = rangeangle(POS)
[tgtrng,tgtang] = rangeangle(POS,REFPOS)
[tgtrng,tgtang] = rangeangle(POS,REFPOS,REFAXES)

Description [tgtrng,tgtang] = rangeangle(POS) returns the range, tgtrng, and
direction, tgtang, from the origin to the position, POS.

[tgtrng,tgtang] = rangeangle(POS,REFPOS) returns the range and
angle from the reference position, REFPOS, to the position POS.

[tgtrng,tgtang] = rangeangle(POS,REFPOS,REFAXES) returns the
range and angle of POS in the local coordinate system whose origin is
REFPOS and whose axes are defined in REFAXES.

Input
Arguments

POS

Input position in meters. POS is 3-by-N matrix of rectangular
coordinates in the form [x;y;z]. Each column in POS represents the
coordinates of one position.

REFPOS

Reference position. REFPOS is a 3-by-1 vector of rectangular coordinates
in the form [x;y;z]. REFPOS serves as the origin of the local coordinate
system. Ranges and angles to the columns of POS are measured with
respect to REFPOS.

Default: [0;0;0]

REFAXES

Local coordinate system axes. REFAXES is a 3-by-3 matrix whose
columns define the axes the of the local coordinate system with origin at
REFPOS. Each column in REFAXES specifies the direction of an axis for
the local coordinate system in rectangular coordinates [x; y; z].

Default: [0 1 0;0 0 1;1 0 0]

2-272

rangeangle

Output
Arguments

tgtrng

Range in meters. tgtrng is an 1-by-N vector of ranges from the origin
to the corresponding columns in POS.

tgtang

Azimuth and elevation angles in degrees. tgtang is a 2-by-N matrix
whose columns are the angles in the form [azimuth;elevation] for the
corresponding positions specified in POS.

Examples Find the range and angle of a target located at (1000,2000,50).

TargetLoc = [1e3;2e3;50];
[tgtrng,tgtang] = rangeangle(TargetLoc);

Find the range and angle of a target located at (1000,2000,50) with
respect to a local origin at (100,100,10).

TargetLoc = [1e3;2e3;50];
[tgtrng,tgtang] = rangeangle(TargetLoc,[100; 100; 10]);

Find the range and angle of a target located at (1000,2000,50) with
respect to a local origin at (100,100,10). The local coordinate axes are
[1/sqrt(2) 1/sqrt(2) 0; 1/sqrt(2) -1/sqrt(2) 0; 0 0 1];.

TargetLoc = [1e3;2e3;50];
refaxes =[1/sqrt(2) 1/sqrt(2) 0; 1/sqrt(2) -1/sqrt(2) 0; 0 0 1];
[tgtrng,tgtang] = rangeangle(TargetLoc,[100; 100; 10],refaxes);

See Also global2localcoord | local2globalcoord | azel2uv | azel2phitheta

Related
Examples

• “Global and Local Coordinate Systems”

2-273

rdcoupling

Purpose Range Doppler coupling

Syntax dr = rdcoupling(fd,slope)
dr = rdcoupling(fd,slope,c)

Description dr = rdcoupling(fd,slope) returns the range offset due to the
Doppler shift in a linear frequency modulated signal. For example, the
signal can be a linear FM pulse or an FMCW signal. slope is the slope
of the linear frequency modulation.

dr = rdcoupling(fd,slope,c) specifies the signal propagation speed.

Input
Arguments

fd - Doppler shift
array of real numbers

Doppler shift, specified as an array of real numbers.

Data Types
double

slope - Slope of linear frequency modulation
nonzero scalar

Slope of linear frequency modulation, specified as a nonzero scalar in
hertz per second.

Data Types
double

c - Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per
second.

Data Types
double

2-274

rdcoupling

Output
Arguments

dr - Range offset due to Doppler shift
real scalar

Range offset due to Doppler shift, returned as an array of real numbers.
The dimensions of dr match the dimensions of fd.

Definitions Range Offset

The range offset is the difference between the estimated range and the
true range. The difference arises from coupling between the range and
Doppler shift.

Algorithms The function computes -c*fd/(2*slope).

Examples Range of Target After Correcting for Doppler Shift

Calculate the true range of the target for an FMCW waveform that
sweeps a band of 3 MHz in 2 ms. The dechirped target return has a beat
frequency of 1 kHz. The processing of the target return also indicates
a Doppler shift of 100 Hz.

slope = 30e6/2e-3;
fb = 1e3;
fd = 100;
r = beat2range(fb,slope) - rdcoupling(fd,slope);

References
[1] Barton, David K. Radar System Analysis and Modeling. Boston:
Artech House, 2005.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also beat2range | dechirp | range2beat | stretchfreq2rng |
phased.FMCWWaveform | phased.LinearFMWaveform

2-275

rdcoupling

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

2-276

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

rocpfa

Purpose Receiver operating characteristic curves by false-alarm probability

Syntax [Pd,SNR] = rocpfa(Pfa)
[Pd,SNR] = rocpfa(Pfa,Name,Value)
rocpfa(...)

Description [Pd,SNR] = rocpfa(Pfa) returns the single-pulse detection
probabilities, Pd, and required SNR values, SNR, for the false-alarm
probabilities in the row or column vector Pfa. By default, for each
false-alarm probability, the detection probabilities are computed for
101 equally spaced SNR values between 0 and 20 dB. The ROC curve
is constructed assuming a single pulse in coherent receiver with a
nonfluctuating target.

[Pd,SNR] = rocpfa(Pfa,Name,Value) returns detection probabilities
and SNR values with additional options specified by one or more
Name,Value pair arguments.

rocpfa(...) plots the ROC curves.

Input
Arguments

Pfa

False-alarm probabilities in a row or column vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’MaxSNR’

Maximum SNR to include in the ROC calculation.

Default: 20

’MinSNR’

2-277

rocpfa

Minimum SNR to include in the ROC calculation.

Default: 0

’NumPoints’

Number of SNR values to use when calculating the ROC curves. The
actual values are equally spaced between MinSNR and MaxSNR.

Default: 101

’NumPulses’

Number of pulses to integrate when calculating the ROC curves. A
value of 1 indicates no pulse integration.

Default: 1

’SignalType’

String that specifies the type of received signal or, equivalently,
the probability density functions (PDF) used to compute the
ROC. Valid values are: 'Real', 'NonfluctuatingCoherent',
'NonfluctuatingNoncoherent', 'Swerling1', 'Swerling2',
'Swerling3', and 'Swerling4'. The strings are not case sensitive.

The 'NonfluctuatingCoherent' signal type assumes that the noise in
the received signal is a complex-valued, Gaussian random variable.
This variable has independent zero-mean real and imaginary parts each
with variance σ2/2 under the null hypothesis. In the case of a single
pulse in a coherent receiver with complex white Gaussian noise, the
probability of detection, PD, for a given false-alarm probability, PFA is:

P PD FA= −−1
2

21erfc erfc(())

where erfc and erfc-1 are the complementary error function and that
function’s inverse, and χ is the SNR not expressed in decibels.

For details about the other supported signal types, see [1].

2-278

rocpfa

Default: 'NonfluctuatingCoherent'

Output
Arguments

Pd

Detection probabilities corresponding to the false-alarm probabilities.
For each false-alarm probability in Pfa, Pd contains one column of
detection probabilities.

SNR

Signal-to-noise ratios in a column vector. By default, the SNR values
are 101 equally spaced values between 0 and 20. To change the range of
SNR values, use the optional MinSNR or MaxSNR input argument. To
change the number of SNR values, use the optional NumPoints input
argument.

Examples Plot ROC curves for false-alarm probabilities of 1e–8, 1e–6, and 1e–3,
assuming coherent integration of a single pulse.

Pfa = [1e-8 1e-6 1e-3]; % false-alarm probabilities
rocpfa(Pfa,'SignalType','NonfluctuatingCoherent')

2-279

rocpfa

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005, pp 298–336.

See Also npwgnthresh | rocsnr | shnidman

2-280

rocsnr

Purpose Receiver operating characteristic curves by SNR

Syntax [Pd,Pfa] = rocsnr(SNRdB)
[Pd,Pfa] = rocsnr(SNRdB,Name,Value)
rocsnr(...)

Description [Pd,Pfa] = rocsnr(SNRdB) returns the single-pulse detection
probabilities, Pd, and false-alarm probabilities, Pfa, for the SNRs in
the vector SNRdB. By default, for each SNR, the detection probabilities
are computed for 101 false-alarm probabilities between 1e–10 and
1. The false-alarm probabilities are logarithmically equally spaced.
The ROC curve is constructed assuming a coherent receiver with a
nonfluctuating target.

[Pd,Pfa] = rocsnr(SNRdB,Name,Value) returns detection
probabilities and false-alarm probabilities with additional options
specified by one or more Name,Value pair arguments.

rocsnr(...) plots the ROC curves.

Input
Arguments

SNRdB

Signal-to-noise ratios in decibels, in a row or column vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’MaxPfa’

Maximum false-alarm probability to include in the ROC calculation.

Default: 1

’MinPfa’

2-281

rocsnr

Minimum false-alarm probability to include in the ROC calculation.

Default: 1e-10

’NumPoints’

Number of false-alarm probabilities to use when calculating the ROC
curves. The actual probability values are logarithmically equally spaced
between MinPfa and MaxPfa.

Default: 101

’NumPulses’

Number of pulses to integrate when calculating the ROC curves. A
value of 1 indicates no pulse integration.

Default: 1

’SignalType’

String that specifies the type of received signal or, equivalently,
the probability density functions (PDF) used to compute the
ROC. Valid values are: 'Real', 'NonfluctuatingCoherent',
'NonfluctuatingNoncoherent', 'Swerling1', 'Swerling2',
'Swerling3', and 'Swerling4'.

The 'NonfluctuatingCoherent' signal type assumes that the noise in
the received signal is a complex-valued, Gaussian random variable.
This variable has independent zero-mean real and imaginary parts each
with variance σ2/2 under the null hypothesis. In the case of a single
pulse in a coherent receiver with complex white Gaussian noise, the
probability of detection, PD, for a given false-alarm probability, PFA is:

P PD FA= −−1
2

21erfc erfc(())

where erfc and erfc-1 are the complementary error function and that
function’s inverse, and χ is the SNR not expressed in decibels.

2-282

rocsnr

For details about the other supported signal types, see [1].

Default: 'NonfluctuatingCoherent'

Output
Arguments

Pd

Detection probabilities corresponding to the false-alarm probabilities.
For each SNR in SNRdB, Pd contains one column of detection
probabilities.

Pfa

False-alarm probabilities in a column vector. By default, the
false-alarm probabilities are 101 logarithmically equally spaced values
between 1e–10 and 1. To change the range of probabilities, use the
optional MinPfa or MaxPfa input argument. To change the number of
probabilities, use the optional NumPoints input argument.

Examples Plot ROC curves for coherent integration of a single pulse.

SNRdB = [3 6 9 12]; % SNRs
[Pd,Pfa] = rocsnr(SNRdB,'SignalType','NonfluctuatingCoherent');
semilogx(Pfa,Pd);
grid on; xlabel('P_{fa}'); ylabel('P_d');
legend('SNR 3 dB','SNR 6 dB','SNR 9 dB','SNR 12 dB',...

'location','northwest');
title('Receiver Operating Characteristic (ROC) Curves');

2-283

rocsnr

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005, pp 298–336.

See Also npwgnthresh | rocpfa | shnidman

2-284

rootmusicdoa

Purpose Direction of arrival using Root MUSIC

Syntax ang = rootmusicdoa(R,nsig)
ang = rootmusicdoa(___ ,'Name','Value')

Description ang = rootmusicdoa(R,nsig) estimates the directions of arrival,
ang, of a set of plane waves received on a uniform line array (ULA).
The estimation uses the root MUSIC algorithm. The input arguments
are the estimated spatial covariance matrix between sensor elements,
R, and the number of arriving signals, nsig. In this syntax, sensor
elements are spaced one-half wavelength apart.

ang = rootmusicdoa(___ ,'Name','Value') allows you to specify
additional input parameters in the form of Name-Value pairs. This
syntax can use any of the input arguments in the previous syntax.

Input
Arguments

R - Spatial covariance matrix
Complex-valued positive-definite N-by-N matrix

Spatial covariance matrix, specified as a complex-valued,
positive-definite, N-by-N matrix. In this matrix, N represents the
number of elements in the ULA array. If R is not Hermitian, a
Hermitian matrix is formed by averaging the matrix and its conjugate
transpose, (R+R')/2.

Example: [4.3162, –0.2777 –0.2337i; –0.2777 + 0.2337i , 4.3162]

Data Types
double
Complex Number Support: Yes

nsig - Number of arriving signals
Positive integer

Number of arriving signals, specified as a positive integer.

Example: 2

2-285

rootmusicdoa

Data Types
double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘ElementSpacing’, 0.4

’ElementSpacing’ - ULA element spacing
0.5 (default) | Real-valued positive scalar

ULA element spacing, specified as a real-valued, positive scalar.
Position units are measured in terms of signal wavelength.

Example: 0.4

Data Types
double

Output
Arguments

ang - Directions of arrival angles
Real-valued 1-by-M row vector

Directions of arrival angle, returned as a real-valued, 1-by-M vector.
The dimension M is the number of arriving signals specified in the
argument nsig. Angle units are degrees and angle values lie between
–90° and 90°.

Examples Three Signals Arriving at Half-Wavelength-Spaced ULA

Assume a half-wavelength spaced uniform line array with 10 elements.
Three plane waves arrive from the 0°, –25°, and 30° azimuth directions.
Elevation angles are 0°. The noise is spatially and temporally white
Gaussian noise.

Set the SNR for each signal to 5 dB. Find the arrival angles.

N = 10;

2-286

rootmusicdoa

d = 0.5;
elementPos = (0:N-1)*d;
angles = [0 -25 30];
Nsig = 3;
R = sensorcov(elementPos,angles,db2pow(-5));
doa = rootmusicdoa(R,Nsig)

doa =

-0.0000 30.0000 -25.0000

The rootmusicdoa function finds the correct angles.

Three Signals Arriving at 0.4-Wavelength-Spaced ULA

Assume a uniform line array 10 elements, as in the previous example.
But now the element spacing is smaller than one-half wavelength.
Three plane waves arrive from the 0°, –25°, and 30° azimuth directions.
Elevation angles are 0°. The noise is spatially and temporally white
Gaussian noise. The SNR for each signal is 5 dB.

Set the ElementSpacing property value to the interelement spacing, 0.4
wavelengths. Find the arrival angles.

N = 10;
d = 0.4;
elementPos = (0:N-1)*d;
angles = [0 -25 30];
Nsig = 3;
R = sensorcov(elementPos,angles,db2pow(-5));
doa = rootmusicdoa(R,Nsig,'ElementSpacing',d)

doa =

-25.0000 0.0000 30.0000

The rootmusicdoa function finds the correct angles.

2-287

rootmusicdoa

References
[1] Van Trees, H.L. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also aictest | espritdoa | rootmusicdoa | spsmooth |
phased.RootMUSICEstimator

2-288

rotx

Purpose Rotation matrix for rotations around x-axis

Syntax R = rotx(ang)

Description R = rotx(ang) creates a 3-by-3 matrix used to rotated a 3-by-1 vector or
3-by-N matrix of vectors around the x-axis by ang degrees. When acting
on a matrix, each column of the matrix represents a different vector. For
the rotation matrix R and vector v, the rotated vector is given by R*v.

Input
Arguments

ang - Rotation angle
Real-valued scalar

Rotation angle specified as a real-valued scalar. The rotation angle is
positive if the rotation is in the counter-clockwise direction when viewed
by an observer looking along the x-axis towards the origin. Angle units
are in degrees.

Example: 30.0

Data Types
double

Output
Arguments

R - Rotation matrix
Real-valued orthogonal matrix

3-by-3 rotation matrix returned as

Rx () cos sin
sin cos

  
 

 
















1 0 0
0
0

for a rotation angle α.

Examples Rotation matrix for 30° rotation

Construct the matrix for a rotation of a vector around the x-axis by 30°.
Then let the matrix operate on a vector:

2-289

rotx

R = rotx(30)

R =

1 0 0
0 0.86603 -0.5
0 0.5 0.86603

x = [2;-2;4];
y = R*x

y =

2
-3.7321
2.4641

Under a rotation around the x-axis, the x-component of a vector is left
unchanged.

Definitions Rotation Matrices

In transforming vectors in three-dimensional space, rotation matrices
are often encountered. Rotation matrices are used in two senses: they
can be used to rotate a vector into a new position or they can be used
to rotate a coordinate basis (or coordinate system) into a new one. In
this case, the vector is left alone but its components in the new basis
will be different from those in the original basis. In Euclidean space,
there are three basic rotations: one each around the x, y and z axes.
Each rotation is specified by an angle of rotation. The rotation angle
is defined to be positive for a rotation that is counterclockwise when
viewed by an observer looking along the rotation axis towards the
origin. Any arbitrary rotation can be composed of a combination of these
three (Euler’s rotation theorem). For example, one can rotated a vector

using a sequence of three rotations:   v v vA R R Rz y x() () ()   .

The rotation matrices that rotate a vector around the x, y, and z-axes
are given by:

2-290

rotx

• Counterclockwise rotation around x-axis

Rx () cos sin
sin cos

  
 

 
















1 0 0
0
0

• Counterclockwise rotation around y-axis

Ry ()
cos sin

sin cos


 

 




















0
0 1 0

0

• Counterclockwise rotation around z-axis

Rz()
cos sin
sin cos

 
 

















0
0

0 0 1

The following three figures show what positive rotations look like for
each rotation axis:

2-291

rotx

2-292

rotx

2-293

rotx

2-294

rotx

For any rotation, there is an inverse rotation satisfying A A 1 1 .
For example, the inverse of the x-axis rotation matrix is obtained by
changing the sign of the angle:

R R Rx x x
   


















1

1 0 0
0
0

() () cos sin
sin cos

()   
 



This example illustrates a basic property: the inverse rotation matrix
equals the transpose of the original. Rotation matrices satisfy A’A =
1, and consequently det(A) = 1. Under rotations, vector lengths are
preserved as well as the angles between vectors.

We can think of rotations in another way. Consider the original set of

basis vectors, i j k, , , and rotate them all using the rotation matrix A.

This produces a new set of basis vectors i j k  , , related to the original
by:

 
 
 

i i
j j
k k

A
A
A

The new basis vectors can be written as linear combinations of the old
ones and involve the transpose:




















 

















i
j
k

i
j
k

A

Now any vector can be written as a linear combination of either set
of basis vectors:

v i j k i j k           v v v v v vx y z x y z

2-295

rotx

Using some algebraic manipulation, one can derive the transformation
of components for a fixed vector when the basis (or coordinate system)
rotates






































 


















v
v

v

A
v
v

v

A
v
v

v

x

y

z

x

y

z

x

y

z

1

Thus the change in components of a vector when the coordinate system
rotates involves the transpose of the rotation matrix. The next figure
illustrates how a vector stays fixed as the coordinate system rotates
around the x-axis. The figure after shows how this can be interpreted
as a rotation of the vector in the opposite direction.

2-296

rotx

2-297

rotx

2-298

rotx

References
[1] Goldstein, H., C. Poole and J. Safko,Classical Mechanics, 3rd
Edition, San Francisco: Addison Wesley, 2002, pp. 142–144.

See Also roty | rotz

2-299

roty

Purpose Rotation matrix for rotations around y-axis

Syntax R = roty(ang)

Description R = roty(ang) creates a 3-by-3 matrix used to rotated a 3-by-1 vector or
3-by-N matrix of vectors around the y-axis by ang degrees. When acting
on a matrix, each column of the matrix represents a different vector. For
the rotation matrix R and vector v, the rotated vector is given by R*v.

Input
Arguments

ang - Rotation angle
Real-valued scalar

Rotation angle specified as a real-valued scalar. The rotation angle is
positive if the rotation is in the counter-clockwise direction when viewed
by an observer looking along the y-axis towards the origin. Angle units
are in degrees.

Example: 30.0

Data Types
double

Output
Arguments

R - Rotation matrix
Real-valued orthogonal matrix

3-by-3 rotation matrix returned as

Ry ()
cos sin

sin cos


 

 




















0
0 1 0

0

for a rotation angle β.

Examples Rotation matrix for 45° rotation

Construct the matrix for a rotation of a vector around the y-axis by 45°.
Then let the matrix operate on a vector:

2-300

roty

R = roty(45)

R =

0.7071 0 0.7071
0 1.0000 0

-0.7071 0 0.7071

v = [1;-2;4];
y = R*v

y =

3.5355
-2.0000
2.1213

Under a rotation around the y-axis, the y-component of a vector is left
unchanged.

Definitions Rotation Matrices

In transforming vectors in three-dimensional space, rotation matrices
are often encountered. Rotation matrices are used in two senses: they
can be used to rotate a vector into a new position or they can be used
to rotate a coordinate basis (or coordinate system) into a new one. In
this case, the vector is left alone but its components in the new basis
will be different from those in the original basis. In Euclidean space,
there are three basic rotations: one each around the x, y and z axes.
Each rotation is specified by an angle of rotation. The rotation angle
is defined to be positive for a rotation that is counterclockwise when
viewed by an observer looking along the rotation axis towards the
origin. Any arbitrary rotation can be composed of a combination of these
three (Euler’s rotation theorem). For example, one can rotated a vector

using a sequence of three rotations:   v v vA R R Rz y x() () ()   .

The rotation matrices that rotate a vector around the x, y, and z-axes
are given by:

2-301

roty

• Counterclockwise rotation around x-axis

Rx () cos sin
sin cos

  
 

 
















1 0 0
0
0

• Counterclockwise rotation around y-axis

Ry ()
cos sin

sin cos


 

 




















0
0 1 0

0

• Counterclockwise rotation around z-axis

Rz()
cos sin
sin cos

 
 

















0
0

0 0 1

The following three figures show what positive rotations look like for
each rotation axis:

2-302

roty

2-303

roty

2-304

roty

2-305

roty

For any rotation, there is an inverse rotation satisfying A A 1 1 .
For example, the inverse of the x-axis rotation matrix is obtained by
changing the sign of the angle:

R R Rx x x
   


















1

1 0 0
0
0

() () cos sin
sin cos

()   
 



This example illustrates a basic property: the inverse rotation matrix
equals the transpose of the original. Rotation matrices satisfy A’A =
1, and consequently det(A) = 1. Under rotations, vector lengths are
preserved as well as the angles between vectors.

We can think of rotations in another way. Consider the original set of

basis vectors, i j k, , , and rotate them all using the rotation matrix A.

This produces a new set of basis vectors i j k  , , related to the original
by:

 
 
 

i i
j j
k k

A
A
A

The new basis vectors can be written as linear combinations of the old
ones and involve the transpose:




















 

















i
j
k

i
j
k

A

Now any vector can be written as a linear combination of either set
of basis vectors:

v i j k i j k           v v v v v vx y z x y z

2-306

roty

Using some algebraic manipulation, one can derive the transformation
of components for a fixed vector when the basis (or coordinate system)
rotates






































 


















v
v

v

A
v
v

v

A
v
v

v

x

y

z

x

y

z

x

y

z

1

Thus the change in components of a vector when the coordinate system
rotates involves the transpose of the rotation matrix. The next figure
illustrates how a vector stays fixed as the coordinate system rotates
around the x-axis. The figure after shows how this can be interpreted
as a rotation of the vector in the opposite direction.

2-307

roty

2-308

roty

2-309

roty

References
[1] Goldstein, H., C. Poole and J. Safko, Classical Mechanics, 3rd
Edition, San Francisco: Addison Wesley, 2002, pp. 142–144.

See Also rotx | rotz

2-310

rotz

Purpose Rotation matrix for rotations around z-axis

Syntax R = rotz(ang)

Description R = rotz(ang) creates a 3-by-3 matrix used to rotated a 3-by-1 vector or
3-by-N matrix of vectors around the z-axis by ang degrees. When acting
on a matrix, each column of the matrix represents a different vector. For
the rotation matrix R and vector v, the rotated vector is given by R*v.

Input
Arguments

ang - Rotation angle
Real-valued scalar

Rotation angle specified as a real-valued scalar. The rotation angle is
positive if the rotation is in the counter-clockwise direction when viewed
by an observer looking along the z-axis towards the origin. Angle units
are in degrees.

Example: 45.0

Data Types
double

Output
Arguments

R - Rotation matrix
Real-valued orthogonal matrix

3-by-3 rotation matrix returned as

Rz()
cos sin
sin cos

 
 

















0
0

0 0 1

for a rotation angle γ.

Examples Rotation matrix for 45° rotation

Construct the matrix for a rotation of a vector around the z-axis by 45°.
Then let the matrix operate on a vector:

2-311

rotz

R = rotz(45)

R =

0.7071 -0.7071 0
0.7071 0.7071 0

0 0 1.0000

v = [1;-2;4];
y = R*v

y =

2.1213
-0.7071
4.0000

Under a rotation around the z-axis, the z-component of a vector is left
unchanged.

Definitions Rotation Matrices

In transforming vectors in three-dimensional space, rotation matrices
are often encountered. Rotation matrices are used in two senses: they
can be used to rotate a vector into a new position or they can be used
to rotate a coordinate basis (or coordinate system) into a new one. In
this case, the vector is left alone but its components in the new basis
will be different from those in the original basis. In Euclidean space,
there are three basic rotations: one each around the x, y and z axes.
Each rotation is specified by an angle of rotation. The rotation angle
is defined to be positive for a rotation that is counterclockwise when
viewed by an observer looking along the rotation axis towards the
origin. Any arbitrary rotation can be composed of a combination of these
three (Euler’s rotation theorem). For example, one can rotated a vector

using a sequence of three rotations:   v v vA R R Rz y x() () ()   .

The rotation matrices that rotate a vector around the x, y, and z-axes
are given by:

2-312

rotz

• Counterclockwise rotation around x-axis

Rx () cos sin
sin cos

  
 

 
















1 0 0
0
0

• Counterclockwise rotation around y-axis

Ry ()
cos sin

sin cos


 

 




















0
0 1 0

0

• Counterclockwise rotation around z-axis

Rz()
cos sin
sin cos

 
 

















0
0

0 0 1

The following three figures show what positive rotations look like for
each rotation axis:

2-313

rotz

2-314

rotz

2-315

rotz

2-316

rotz

For any rotation, there is an inverse rotation satisfying A A 1 1 .
For example, the inverse of the x-axis rotation matrix is obtained by
changing the sign of the angle:

R R Rx x x
   


















1

1 0 0
0
0

() () cos sin
sin cos

()   
 



This example illustrates a basic property: the inverse rotation matrix
equals the transpose of the original. Rotation matrices satisfy A’A =
1, and consequently det(A) = 1. Under rotations, vector lengths are
preserved as well as the angles between vectors.

We can think of rotations in another way. Consider the original set of

basis vectors, i j k, , , and rotate them all using the rotation matrix A.

This produces a new set of basis vectors i j k  , , related to the original
by:

 
 
 

i i
j j
k k

A
A
A

The new basis vectors can be written as linear combinations of the old
ones and involve the transpose:




















 

















i
j
k

i
j
k

A

Now any vector can be written as a linear combination of either set
of basis vectors:

v i j k i j k           v v v v v vx y z x y z

2-317

rotz

Using some algebraic manipulation, one can derive the transformation
of components for a fixed vector when the basis (or coordinate system)
rotates






































 


















v
v

v

A
v
v

v

A
v
v

v

x

y

z

x

y

z

x

y

z

1

Thus the change in components of a vector when the coordinate system
rotates involves the transpose of the rotation matrix. The next figure
illustrates how a vector stays fixed as the coordinate system rotates
around the x-axis. The figure after shows how this can be interpreted
as a rotation of the vector in the opposite direction.

2-318

rotz

2-319

rotz

2-320

rotz

References
[1] Goldstein, H., C. Poole and J. Safko, Classical Mechanics, 3rd
Edition, San Francisco: Addison Wesley, 2002, pp. 142–144.

See Also rotx | roty

2-321

sensorArrayAnalyzer

Purpose Sensor array analyzer

Description You use the Sensor Array Analyzer app to construct and analyze
common sensor array configurations. These configurations range from
1-D to 3-D arrays of antennas and microphones. You can use this app to
generate the directivity of the following arrays.

Uniform Linear Array (ULA) Uniform Rectangular Array (URA)

Uniform Circular Array Uniform Hexagonal Array

Circular Plane Array Concentric Array

Spherical Array Cylindrical Array

Arbitrary Geometry

Each array type has different sets of parameters for its specification.
After you select an array type, you can modify the array parameters.
The parameters you can set include the type of antenna or microphone
elements, the number and spacing of elements, and any array tapering
(also called shading). You can enter the element spacing in meters or
units of wavelength. After you enter all the information for your array,
the app then displays basic performance characteristics, such as array
directivity and array dimensions.

These are the types of elements available to populate an array.

Isotropic Antenna

Cosine Antenna

Omnidirectional Microphone

Cardioid Microphone

Custom Antenna

The Sensor Array Analyzer app lets you produce a variety of plots
and images. These are types of plots available.

2-322

sensorArrayAnalyzer

Plot type

Array Geometry

2D Array Directivity

3D Array Directivity

Grating Lobes Available for the Uniform Linear
Array, the Uniform Rectangular
Array, the Uniform Hexagonal
Array, and the Circular Planar
Array.

Examples Uniform Linear Array

Start with 10-element uniform linear array (ULA) in a sonar
application with omnidirectional microphones. A uniform linear array
has its sensor elements equally-spaced spaced along a single line.
Set the Array Type to Uniform Linear and the Element Type to
Omnidirectional Microphone. Design the array to find the arrival
direction of a 10 kHz signal by setting Signal Frequencies to 10000
and the Element Spacing to 0.5 wavelengths. In water, for example,
you can set the signal Propagation Speed to equal the speed of sound
in water, 1500 m/s.

Then, in the View dropdown menu, choose the Array Geometry option
to draw the shape of the array.

2-323

sensorArrayAnalyzer

2-324

sensorArrayAnalyzer

2-325

sensorArrayAnalyzer

A beamscanner works by successively pointing the array mainlobe in
a sequence of different directions. Setting the Steering option to On
lets you steer the mainlobe in the direction specified by the Steering
Angles option. In this case, set the steering angle to [30;0] to point the
mainlobe to 30° in azimuth and 0° elevation. In the next figure, you can
see two mainlobes, one at 30° as expected, and another at 150°. Again,
two mainlobes appear because of the cylindrical symmetry of the array.

2-326

sensorArrayAnalyzer

2-327

sensorArrayAnalyzer

down by about only 13 dB. A strong sidelobe inhibits the ability of
the array to detect a weaker signal in the presence of a larger nearby
signal. By using array tapering, you can reduce the side lobes. Use
the Taper option to specify the array taper as a Taylor window with
Sidelobe Attenuation set to 30 dB. The next figure shows how the
Taylor window reduces all side lobes to –30 dB—but at the expense of
broadening the mainlobe.

2-328

sensorArrayAnalyzer

2-329

sensorArrayAnalyzer

Uniform Rectangular Array

Construct a 6-by-6 uniform rectangular array (URA) designed to
detect and localize a 100 MHz signal. Set the Array Type to Uniform
Rectangular, the Element Type to Isotropic Antenna, and the Size
to [6 6]. Design the array to find the arrival direction of a 100 MHz
signal by setting Signal Frequencies to 100e+6 and the row and
column Element Spacing to 0.5 wavelength. Set both the Row Taper
and Column Taper to a Taylor window. The shape of the array is
shown in the figure below.

2-330

sensorArrayAnalyzer

2-331

sensorArrayAnalyzer

2-332

sensorArrayAnalyzer

directivity. Without tapering, the array directivity for this URA is 17.2
dB. With tapering, the array directivity loses 1 dB to yield 16.0 dB.

Grating Lobes for a Rectangular Array

Show the grating lobe diagram of a 4-by-4 uniform rectangular array
(URA) designed to detect and localize a 300 MHz signal. Set the Array
Type to Uniform Rectangular, the Element Type to Isotropic
Antenna, and the array Size to [4 4]. Set the Signal Frequencies
to 300e+6. By setting the row and column Element Spacing to 0.7
wavelengths, you create a spatially undersampled array.

This figure shows the grating lobe diagram produced when you
beamform the array towards the angle [20,0]. The mainlobe is
designated by the small black-filled circle. The multiple grating lobes
are designated by the small unfilled black circles. The larger black
circle is called the physical region, for which u2+ v2 ≤ 1. The mainlobe
always lies in the physical region. The grating lobes may or may not lie
in the physical region. Any grating lobe in the physical region leads to
an ambiguity in the direction of the incoming wave. The green region
shows where the mainlobe can be pointed without any grating lobes
appearing in the physical region. If the mainlobe is set to point outside
the green region, a grating lobe moves into the physical region.

2-333

sensorArrayAnalyzer

2-334

sensorArrayAnalyzer

The next figure shows what happens when the pointing direction lies
outside the green region. In this case, one grating lobe moves into the
physical region.

2-335

sensorArrayAnalyzer

2-336

sensorArrayAnalyzer

Specify arbitrary array geometry

You can specify an array which has an arbitrary placement of sensors.
This simple example shows how to construct a triangular array of three
isotropic antenna elements. The elements are placed at [0,0,0]',
[0,1,0.5]', and [0,0,0.866]'. All elements have the same normal
direction [0,20], pointing to 0° in azimuth and 20° in elevation.

2-337

sensorArrayAnalyzer

2-338

sensorArrayAnalyzer

2-339

sensorArrayAnalyzer

Specify array geometry using variables

Specify an array which has an arbitrary placement of sensors but, in
this case, create MATLAB variables or arrays at the command line and
use them in the appropriate sensorArrayAnalyzer fields. This simple
example shows the how to construct a triangular array of three isotropic
antenna elements. At the command line, create an element position
array, pos, an element normal array, nrm, and a taper value array, tpr.

pos = [0,0,0;0,1,0.5;0,0,0.866];
nrm = [0,0,0;20,20,20];
tpr = [1,1,1];

Then, enter these variables in the appropriate sensorArrayAnalyzer
fields.

2-340

sensorArrayAnalyzer

2-341

sensorcov

Purpose Sensor spatial covariance matrix

Syntax xcov = sensorcov(pos,ang)
xcov = sensorcov(pos,ang,ncov)
xcov = sensorcov(pos,ang,ncov,scov)

Description xcov = sensorcov(pos,ang) returns the sensor spatial covariance
matrix, xcov, for narrowband plane wave signals arriving at a sensor
array. The sensor array is defined by the sensor positions specified
in the pos argument. The signal arrival directions are specified by
azimuth and elevation angles in the ang argument. In this syntax, the
noise power is assumed to be zero at all sensors, and the signal power is
assumed to be unity for all signals.

xcov = sensorcov(pos,ang,ncov) specifies, in addition, the spatial
noise covariance matrix, ncov. This value represents the noise power
on each sensor as well as the correlation of the noise between sensors.
In this syntax, the signal power is assumed to be unity for all signals.
This syntax can use any of the input arguments in the previous syntax.

xcov = sensorcov(pos,ang,ncov,scov) specifies, in addition, the
signal covariance matrix, scov, which represents the power in each
signal and the correlation between signals. This syntax can use any of
the input arguments in the previous syntaxes.

Input
Arguments

pos - Positions of array sensor elements
1-by-N real-valued vector | 2-by-N real-valued matrix | 3-by-N
real-valued matrix

Positions of the elements of a sensor array specified as a 1-by-N vector,
a 2-by-N matrix, or a 3-by-N matrix. In this vector or matrix, N
represents the number of elements of the array. Each column of pos
represents the coordinates of an element. You define sensor position
units in term of signal wavelength. If pos is a 1-by-N vector, then it
represents the y-coordinate of the sensor elements of a line array. The
x and z-coordinates are assumed to be zero. If pos is a 2-by-N matrix,

2-342

sensorcov

then it represents the (y,z)-coordinates of the sensor elements of a
planar array which is assumed to lie in the yz-plane. The x-coordinates
are assumed to be zero. If pos is a 3-by-N matrix, then the array has
arbitrary shape.

Example: [0, 0, 0; .1, .2, .3; 0,0,0]

Data Types
double

ang - Arrival directions of incoming signals
1-by-M real-valued vector | 2-by-M real-valued matrix

Arrival directions of incoming signals specified as a 1-by-M vector or
a 2-by-M matrix, where M is the number of incoming signals. If ang
is a 2-by-M matrix, each column specifies the direction in azimuth and
elevation of the incoming signal [az;el]. Angular units are specified in
degrees. The azimuth angle must lie between –180° and 180° and the
elevation angle must lie between –90° and 90°. The azimuth angle is
the angle between the x-axis and the projection of the arrival direction
vector onto the xy plane. It is positive when measured from the x-axis
toward the y-axis. The elevation angle is the angle between the arrival
direction vector and xy-plane. It is positive when measured towards the
z axis. If ang is a 1-by-M vector, then it represents a set of azimuth
angles with the elevation angles assumed to be zero.

Example: [45;0]

Data Types
double

ncov - Noise spatial covariance matrix
0 (default) | non-negative real-valued scalar | 1-by-N non-negative
real-valued vector | N-by-N positive definite, complex-valued matrix

Noise spatial covariance matrix specified as a non-negative, real-valued
scalar, a non-negative, 1-by-N real-valued vector or an N-by-N, positive
definite, complex-valued matrix. In this argument, N is the number of
sensor elements. Using a non-negative scalar results in a noise spatial
covariance matrix that has identical white noise power values (in

2-343

sensorcov

watts) along its diagonal and has off-diagonal values of zero. Using a
non-negative real-valued vector results in a noise spatial covariance
that has diagonal values corresponding to the entries in ncov and
has off-diagonal entries of zero. The diagonal entries represent the
independent white noise power values (in watts) in each sensor. If ncov
is N-by-N matrix, this value represents the full noise spatial covariance
matrix between all sensor elements.

Example: [1,1,4,6]

Data Types
double
Complex Number Support: Yes

scov - Signal covariance matrix
1 (default) | non-negative real-valued scalar | 1-by-M non-negative
real-valued vector | N-by-M positive semidefinite, complex-valued
matrix

Signal covariance matrix specified as a non-negative, real-valued
scalar, a 1-by-M non-negative, real-valued vector or an M-by-M positive
semidefinite, matrix representing the covariance matrix between
M signals. The number of signals is specified in ang. If scov is a
nonnegative scalar, it assigns the same power (in watts) to all incoming
signals which are assumed to be uncorrelated. If scov is a 1-by-M
vector, it assigns the separate power values (in watts) to each incoming
signal which are also assumed to be uncorrelated. If scov is anM-by-M
matrix, then it represents the full covariance matrix between all
incoming signals.

Example: [1 0 ; 0 2]

Data Types
double
Complex Number Support: Yes

2-344

sensorcov

Output
Arguments

xcov - Sensor spatial covariance matrix
Complex-valued N-by-N matrix

Sensor spatial covariance matrix returned as a complex-valued, N-by-N
matrix. In this matrix, N represents the number of sensor elements
of the array.

Examples Covariance Matrix for Two Signals without Noise

Create a covariance matrix for a 3-element, half-wavelength-spaced
line array. Use the default syntax, which assumes no noise power and
unit signal power.

N = 3; % Elements in array
d = 0.5; % sensor spacing half wavelength
elementPos = (0:N-1)*d;
xcov = sensorcov(elementPos,[30 60]);

xcov =

2.0000 + 0.0000i -0.9127 - 1.4086i -0.3339 + 0.7458i
-0.9127 + 1.4086i 2.0000 + 0.0000i -0.9127 - 1.4086i
-0.3339 - 0.7458i -0.9127 + 1.4086i 2.0000 + 0.0000i

The diagonal terms represent the sum of the two signal powers.

Covariance Matrix for Two Independent Signals with 10 dB
SNR

Create a spatial covariance matrix for a 3-element,
half-wavelength-spaced line array. Assume there are two
incoming unit-power signals and there is a noise value of –10 dB. By
default, scov is the identity matrix.

N = 3; % Elements in array
d = 0.5; % sensor spacing half wavelength
elementPos = (0:N-1)*d;
xcov = sensorcov(elementPos,[30 35],db2pow(-10));

xcov =

2-345

sensorcov

2.1000 + 0.0000i -0.2291 - 1.9734i -1.8950 + 0.4460i
-0.2291 + 1.9734i 2.1000 + 0.0000i -0.2291 - 1.9734i
-1.8950 - 0.4460i -0.2291 + 1.9734i 2.1000 + 0.0000i

The diagonal terms represent the two signal powers plus noise power
at each sensor.

Covariance Matrix for Two Correlated Signals with 10 dB
SNR

Compute the covariance matrix for a 3-element half-wavelength spaced
line array when there is some correlation between two signals. The
correlation can model, for example, multipath propagation caused by
reflection from a surface. Assume a noise power value of –10 dB.

N = 3; % Elements in array
d = 0.5; % sensor spacing half wavelength
elementPos = (0:N-1)*d;
scov = [1, 0.8; 0.8, 1];
xcov = sensorcov(elementPos,[30 35],db2pow(-10),scov);

xcov =

3.7000 + 0.0000i -0.4124 - 3.5521i -3.4111 + 0.8028i
-0.4124 + 3.5521i 3.6574 + 0.0000i -0.4026 - 3.4682i
-3.4111 - 0.8028i -0.4026 + 3.4682i 3.5321 + 0.0000i

References
[1] Van Trees, H.L. Optimum Array Processing. New York, NY:
Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1993.

2-346

sensorcov

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile
approach to spatial filtering”. IEEE ASSP Magazine, Vol. 5 No. 2 pp.
4–24.

See Also cbfweights | lcmvweights | mvdrweights | steervec | sensorsig |
phased.SteeringVector

2-347

sensorsig

Purpose Simulate received signal at sensor array

Syntax x = sensorsig(pos,ns,ang)
x = sensorsig(pos,ns,ang,ncov)
x = sensorsig(pos,ns,ang,ncov,scov)
[x,rt] = sensorsig(___)
[x,rt,r] = sensorsig(___)

Description x = sensorsig(pos,ns,ang) simulates the received narrowband plane
wave signals at a sensor array. pos represents the positions of the
array elements, each of which is assumed to be isotropic. ns indicates
the number of snapshots of the simulated signal. ang represents the
incoming directions of each plane wave signal. The plane wave signals
are assumed to be constant-modulus signals with random phases.

x = sensorsig(pos,ns,ang,ncov) describes the noise across all
sensor elements. ncov specifies the noise power or covariance matrix.
The noise is a Gaussian distributed signal.

x = sensorsig(pos,ns,ang,ncov,scov) specifies the power or
covariance matrix for the incoming signals.

[x,rt] = sensorsig(___) also returns the theoretical covariance
matrix of the received signal, using any of the input arguments in the
previous syntaxes.

[x,rt,r] = sensorsig(___) also returns the sample covariance
matrix of the received signal.

Input
Arguments

pos - Positions of elements in sensor array
1-by-N vector | 2-by-N matrix | 3-by-N matrix

Positions of elements in sensor array, specified as an N-column vector
or matrix. The values in the matrix are in units of signal wavelength.

2-348

sensorsig

For example, [0 1 2] describes three elements that are spaced one
signal wavelength apart. N is the number of elements in the array.

Dimensions of pos:

• For a linear array along the y axis, specify the y coordinates of the
elements in a 1-by-N vector.

• For a planar array in the yz plane, specify the y and z coordinates of
the elements in columns of a 2-by-N matrix.

• For an array of arbitrary shape, specify the x, y, and z coordinates of
the elements in columns of a 3-by-N matrix.

Data Types
double

ns - Number of snapshots of simulated signal
positive integer scalar

Number of snapshots of simulated signal, specified as a positive integer
scalar. The function returns this number of samples per array element.

Data Types
double

ang - Directions of incoming plane wave signals
1-by-M vector | 2-by-M matrix

Directions of incoming plane wave signals, specified as an M-column
vector or matrix in degrees. M is the number of incoming signals.

Dimensions of ang:

• If ang is a 2-by-M matrix, each column specifies a direction. Each
column is in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

• If ang is a 1-by-M vector, each entry specifies an azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

2-349

sensorsig

Data Types
double

ncov - Noise characteristics
0 (default) | nonnegative scalar | 1-by-N vector of positive numbers
| N-by-N positive definite matrix

Noise characteristics, specified as a nonnegative scalar, 1-by-N vector of
positive numbers, or N-by-N positive definite matrix.

Dimensions of ncov:

• If ncov is a scalar, it represents the noise power of the white noise
across all receiving sensor elements, in watts. In particular, a value
of 0 indicates that there is no noise.

• If ncov is a 1-by-N vector, each entry represents the noise power
of one of the sensor elements, in watts. The noise is uncorrelated
across sensors.

• If ncov is an N-by-N matrix, it represents the covariance matrix for
the noise across all sensor elements.

Data Types
double

scov - Incoming signal characteristics
1 (default) | positive scalar | 1-by-M vector of positive numbers |
M-by-M positive semidefinite matrix

Incoming signal characteristics, specified as a positive scalar, 1-by-M
vector of positive numbers, or M-by-M positive semidefinite matrix.

Dimensions of scov:

• If scov is a scalar, it represents the power of all incoming signals, in
watts. In this case, all incoming signals are uncorrelated and share
the same power level.

• If scov is a 1-by-M vector, each entry represents the power of one
of the incoming signals, in watts. In this case, all incoming signals
are uncorrelated with each other.

2-350

sensorsig

• If scov is an M-by-M matrix, it represents the covariance matrix for
all incoming signals. The matrix describes the correlation among the
incoming signals. In this case, scov can be real or complex.

Data Types
double

Output
Arguments

x - Received signal
complex ns-by-N matrix

Received signal at sensor array, returned as a complex ns-by-N matrix.
Each column represents the received signal at the corresponding
element of the array. Each row represents a snapshot.

rt - Theoretical covariance matrix
complex N-by-N matrix

Theoretical covariance matrix of the received signal, returned as a
complex N-by-N matrix.

r - Sample covariance matrix
complex N-by-N matrix

Sample covariance matrix of the received signal, returned as a complex
N-by-N matrix. N is the number of array elements. The function
derives this matrix from x.

Note If you specify this output argument, consider making ns greater
than or equal to N. Otherwise, r is rank deficient.

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is

2-351

sensorsig

between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Examples Received Signal and Direction-of-Arrival Estimation

Simulate the received signal at an array, and use the data to estimate
the arrival directions.

Create an 8-element uniform linear array whose elements are spaced
half a wavelength apart.

2-352

sensorsig

fc = 3e8;
c = 3e8;
lambda = c/fc;
ha = phased.ULA(8,lambda/2);

Simulate 100 snapshots of the received signal at the array. Assume
there are two signals, coming from azimuth 30 and 60 degrees,
respectively. The noise is white across all array elements, and the
SNR is 10 dB.

x = sensorsig(getElementPosition(ha)/lambda,...
100,[30 60],db2pow(-10));

Use a beamscan spatial spectrum estimator to estimate the arrival
directions, based on the simulated data.

hdoa = phased.BeamscanEstimator('SensorArray',ha,...
'PropagationSpeed',c,'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

[~,ang_est] = step(hdoa,x);

Plot the spatial spectrum resulting from the estimation process.

plotSpectrum(hdoa);

2-353

sensorsig

The plot shows peaks at 30 and 60 degrees.

Signals With Different Power Levels

Simulate receiving two uncorrelated incoming signals that have
different power levels. A vector named scov stores the power levels.

Create an 8-element uniform linear array whose elements are spaced
half a wavelength apart.

fc = 3e8;

2-354

sensorsig

c = 3e8;
lambda = c/fc;
ha = phased.ULA(8,lambda/2);

Simulate 100 snapshots of the received signal at the array. Assume
that one incoming signal originates from 30 degrees azimuth and has
a power of 3 W. A second incoming signal originates from 60 degrees
azimuth and has a power of 1 W. The two signals are not correlated
with each other. The noise is white across all array elements, and the
SNR is 10 dB.

ang = [30 60];
scov = [3 1];
x = sensorsig(getElementPosition(ha)/lambda,...

100,ang,db2pow(-10),scov);

Use a beamscan spatial spectrum estimator to estimate the arrival
directions, based on the simulated data.

hdoa = phased.BeamscanEstimator('SensorArray',ha,...
'PropagationSpeed',c,'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

[~,ang_est] = step(hdoa,x);

Plot the spatial spectrum resulting from the estimation process.

plotSpectrum(hdoa);

2-355

sensorsig

The plot shows a high peak at 30 degrees and a lower peak at 60 degrees.

Reception of Correlated Signals

Simulate the reception of three signals, two of which are correlated. A
matrix named scov stores the signal covariance matrix.

Create a signal covariance matrix in which the first and third of three
signals are correlated with each other.

scov = [1 0 0.6;...

2-356

sensorsig

0 2 0 ;...
0.6 0 1];

Simulate receiving 100 snapshots of three incoming signals from 30,
40, and 60 degrees azimuth, respectively. The array that receives the
signals is an 8-element uniform linear array whose elements are spaced
half a wavelength apart. The noise is white across all array elements,
and the SNR is 10 dB.

pos = (0:7)*0.5;
ns = 100;
ang = [30 40 60];
ncov = db2pow(-10);
x = sensorsig(pos,ns,ang,ncov,scov);

Theoretical and Empirical Covariance of Received Signal

Simulate receiving a signal at a URA. Compare the signal’s theoretical
covariance, rt, with its sample covariance, r.

Create a 2-by-2 uniform rectangular array whose elements are spaced
1/4 of a wavelength apart.

pos = 0.25 * [0 0 0 0; -1 1 -1 1; -1 -1 1 1];

Define the noise power independently for each of the four array
elements. Each entry in ncov is the noise power of an array element.
This element’s position is the corresponding column in pos. Assume the
noise is uncorrelated across elements.

ncov = db2pow([-9 -10 -10 -11]);

Simulate 100 snapshots of the received signal at the array, and store
the theoretical and empirical covariance matrices. Assume that one
incoming signal originates from 30 degrees azimuth and 10 degrees
elevation. A second incoming signal originates from 50 degrees azimuth
and 0 degrees elevation. The signals have a power of 1 W and are not
correlated with each other.

ns = 100;

2-357

sensorsig

ang1 = [30; 10];
ang2 = [50; 0];
ang = [ang1, ang2];
rng default
[x,rt,r] = sensorsig(pos,ns,ang,ncov);

View the magnitudes of the theoretical covariance and sample
covariance.

abs(rt)
abs(r)

ans =

2.1259 1.8181 1.9261 1.9754
1.8181 2.1000 1.5263 1.9261
1.9261 1.5263 2.1000 1.8181
1.9754 1.9261 1.8181 2.0794

ans =

2.2107 1.7961 2.0205 1.9813
1.7961 1.9858 1.5163 1.8384
2.0205 1.5163 2.1762 1.8072
1.9813 1.8384 1.8072 2.0000

Correlation of Noise Among Sensors

Simulate receiving a signal at a ULA, where the noise among different
sensors is correlated.

Create a 4-element uniform linear array whose elements are spaced
half a wavelength apart.

pos = 0.5 * (0:3);

2-358

sensorsig

Define the noise covariance matrix. The value in the (k, j) position
in the ncov matrix is the covariance between the kth and jth array
elements listed in pos.

ncov = 0.1 * [1 0.1 0 0; 0.1 1 0.1 0; 0 0.1 1 0.1; 0 0 0.1 1];

Simulate 100 snapshots of the received signal at the array. Assume
that one incoming signal originates from 60 degrees azimuth.

ns = 100;
ang = 60;
[x,rt,r] = sensorsig(pos,ns,ang,ncov);

View the theoretical and sample covariance matrices for the received
signal.

rt,r

rt =

1.1000 -0.9027 - 0.4086i 0.6661 + 0.7458i -0.3033 - 0.9529i

-0.9027 + 0.4086i 1.1000 -0.9027 - 0.4086i 0.6661 + 0.7458i

0.6661 - 0.7458i -0.9027 + 0.4086i 1.1000 -0.9027 - 0.4086i

-0.3033 + 0.9529i 0.6661 - 0.7458i -0.9027 + 0.4086i 1.1000

r =

1.1059 -0.8681 - 0.4116i 0.6550 + 0.7017i -0.3151 - 0.9363i

-0.8681 + 0.4116i 1.0037 -0.8458 - 0.3456i 0.6578 + 0.6750i

0.6550 - 0.7017i -0.8458 + 0.3456i 1.0260 -0.8775 - 0.3753i

-0.3151 + 0.9363i 0.6578 - 0.6750i -0.8775 + 0.3753i 1.0606

See Also phased.SteeringVector

Related
Examples

• Direction of Arrival Estimation with Beamscan and MVDR

2-359

../examples/direction-of-arrival-estimation-with-beamscan-and-mvdr.html

shnidman

Purpose Required SNR using Shnidman’s equation

Syntax SNR = shnidman(Prob_Detect,Prob_FA)
SNR = shnidman(Prob_Detect,Prob_FA,N)
SNR = shnidman(Prob_Detect,Prob_FA,N, Swerling_Num)

Description SNR = shnidman(Prob_Detect,Prob_FA) returns the required
signal-to-noise ratio in decibels for the specified detection and
false-alarm probabilities using Shnidman’s equation. The SNR is
determined for a single pulse and a Swerling case number of 0, a
nonfluctuating target.

SNR = shnidman(Prob_Detect,Prob_FA,N) returns the required SNR
for a nonfluctuating target based on the noncoherent integration of N
pulses.

SNR = shnidman(Prob_Detect,Prob_FA,N, Swerling_Num) returns
the required SNR for the Swerling case number Swerling_Num.

Definitions Shnidman’s Equation

Shnidman’s equation is a series of equations that yield an estimate of
the SNR required for a specified false-alarm and detection probability.
Like Albersheim’s equation, Shnidman’s equation is applicable to
a single pulse or the noncoherent integration of N pulses. Unlike
Albersheim’s equation, Shnidman’s equation holds for square-law
detectors and is applicable to fluctuating targets. An important
parameter in Shnidman’s equation is the Swerling case number.

Swerling Case Number

The Swerling case numbers characterize the detection problem for
fluctuating pulses in terms of:

• A decorrelation model for the received pulses

• The distribution of scatterers affecting the probability density
function (PDF) of the target radar cross section (RCS).

2-360

shnidman

The Swerling case numbers consider all combinations of two
decorrelation models (scan-to-scan; pulse-to-pulse) and two RCS PDFs
(based on the presence or absence of a dominant scatterer).

Swerling Case Number Description

0 (alternatively designated as 5) Nonfluctuating pulses.

I Scan-to-scan decorrelation.
Rayleigh/exponential PDF–A
number of randomly distributed
scatterers with no dominant
scatterer.

II Pulse-to-pulse decorrelation.
Rayleigh/exponential PDF– A
number of randomly distributed
scatterers with no dominant
scatterer.

III Scan-to-scan decorrelation.
Chi-square PDF with 4 degrees of
freedom. A number of scatterers
with one dominant.

IV Pulse-to-pulse decorrelation.
Chi-square PDF with 4 degrees of
freedom. A number of scatterers
with one dominant.

Examples Find and compare the required single-pulse SNR for Swerling cases I
and III.

Pfa = 1e-6:1e-5:.001; % False-alarm Probabilities
Pd = 0.9; % Probability of detection
SNR_Sw1 = zeros(1,length(Pfa)); % Preallocate space.
SNR_Sw3 = zeros(1,length(Pfa)); % Preallocate space.
for j=1:length(Pfa)

% Swerling case I-No dominant scatterer

2-361

shnidman

SNR_Sw1(j) = shnidman(Pd,Pfa(j),1,1);
% Swerling case III-Dominant scatterer
SNR_Sw3(j) = shnidman(Pd,Pfa(j),1,3);

end
semilogx(Pfa,SNR_Sw1,'k','linewidth',2);
hold on;
semilogx(Pfa,SNR_Sw3,'b','linewidth',2);
axis([1e-6 1e-3 5 25]);
xlabel('False-Alarm Probability');
ylabel('SNR');
title('Required Single-Pulse SNR for P_d=0.9');
legend('Swerling Case I','Swerling Case III',...

'Location','SouthWest');

Note that the presence of a dominant scatterer reduces the required
SNR for the specified detection and false-alarm probabilities.

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005, p. 337.

2-362

shnidman

See Also albersheim

2-363

speed2dop

Purpose Convert speed to Doppler shift

Syntax Doppler_shift = speed2dop(radvel,lambda)

Description Doppler_shift = speed2dop(radvel,lambda) returns the one-way
Doppler shift in hertz corresponding to the radial velocity, radvel,
for the wavelength lambda.

Definitions The following equation defines the Doppler shift in hertz based on the
radial velocity of the source relative to the receiver and the carrier
wavelength:

Δf
Vs r= ,


where Vs,r is the radial velocity of the source relative to the receiver in
meters per second and λ is the wavelength in meters.

Examples Calculate the Doppler shift in hertz for a given carrier wavelength and
source speed.

radvel = 35.76; % 35.76 meters per second
f0= 24.15e9; % Frequency of 24.15 GHz
lambda = physconst('LightSpeed')/f0; % wavelength
Doppler_shift = speed2dop(radvel,lambda);
% Doppler shift of 2880.67 Hz

References [1] Rappaport, T. Wireless Communications: Principles & Practices.
Upper Saddle River, NJ: Prentice Hall, 1996.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also dop2speed | dopsteeringvec

2-364

sph2cartvec

Purpose Convert vector from spherical basis components to Cartesian
components

Syntax vr = sph2cartvec(vs,az,el)

Description vr = sph2cartvec(vs,az,el) converts the components of a vector
or set of vectors, vs, from their spherical basis representation to their
representation in a local Cartesian coordinate system. A spherical basis
representation is the set of components of a vector projected into the

right-handed spherical basis given by (, ,)e e eaz el R . The orientation of
a spherical basis depends upon its location on the sphere as determined
by azimuth, az, and elevation, el.

Input
Arguments

vs - Vector in spherical basis representation
3-by-1 column vector | 3-by-N matrix

Vector in spherical basis representation specified as a 3-by-1 column
vector or 3-by-N matrix. Each column of vs contains the three

components of a vector in the right-handed spherical basis (, ,)e e eaz el R .

Example: [4.0; -3.5; 6.3]

Data Types
double
Complex Number Support: Yes

az - Azimuth angle
scalar in range [–180,180]

Azimuth angle specified as a scalar in the closed range [–180,180].
Angle units are in degrees. To define the azimuth angle of a point on
a sphere, construct a vector from the origin to the point. The azimuth
angle is the angle in the xy-plane from the positive x-axis to the vector’s
orthogonal projection into the xy-plane. As examples, zero azimuth
angle and zero elevation angle specify a point on the x-axis while an
azimuth angle of 90° and an elevation angle of zero specify a point on
the y-axis.

2-365

sph2cartvec

Example: 45

Data Types
double

el - Elevation angle
scalar in range [–90,90]

Elevation angle specified as a scalar in the closed range [–90,90]. Angle
units are in degrees. To define the elevation of a point on the sphere,
construct a vector from the origin to the point. The elevation angle is
the angle from its orthogonal projection into the xy-plane to the vector
itself. As examples, zero elevation angle defines the equator of the
sphere and ±90° elevation define the north and south poles, respectively.

Example: 30

Data Types
double

Output
Arguments

vr - Vector in Cartesian representation
3-by-1 column vector | 3-by-N matrix

Cartesian vector returned as a 3-by-1 column vector or 3-by-N matrix
having the same dimensions as vs. Each column of vr contains the
three components of the vector in the right-handed x,y,z basis.

Examples Cartesian Representation of Azimuthal Vector

Start with a vector in a spherical basis located at 45° azimuth, 45°
elevation. The vector points along the azimuth direction. Compute its
components with respect to Cartesian coordinates.

vs = [1;0;0];
vr = sph2cartvec(vs,45,45)

vr =

-0.7071
0.7071

2-366

sph2cartvec

0

Definitions Spherical basis representation of vectors

The spherical basis is a set of three mutually orthogonal unit vectors

(, ,)e e eaz el R defined at a point on the sphere. The first unit vector
points along lines of azimuth at constant radius and elevation. The
second points along the lines of elevation at constant azimuth and
radius. Both are tangent to the surface of the sphere. The third unit
vector points radially outward.

The orientation of the basis changes from point to point on the sphere
but is independent of R so as you move out along the radius, the
basis orientation stays the same. The following figure illustrates the
orientation of the spherical basis vectors as a function of azimuth and
elevation:

2-367

sph2cartvec

az

el

x

y

z

O

R

êaz

êRêel

P

For any point on the sphere specified by az and el, the basis vectors
are given by:

ˆ sin() cos()

ˆ sin()cos() sin()sin

e i j

e i
az

el

  

  

az az

el az el

 

 (() cos()

ˆ cos()cos() cos()sin() sin

az el

el az el az

j k

e i jR

 �

 



   (()el k� .

2-368

sph2cartvec

Any vector can be written in terms of components in this basis as

v e e eaz el R  v v vaz el Rˆ ˆ ˆ . The transformations between spherical
basis components and Cartesian components take the form

v
v

v

az el az el azx

y

z


















 sin() sin()cos() cos()cos()
cos(aaz el az el az

el el
) sin()sin() cos()sin()

cos() sin()
















0

vv
v
v

az

el

R

















.

and

v
v
v

az az
el az el

az

el

R



















 

sin() cos()
sin()cos() sin()

0
ssin() cos()

cos()cos() cos()sin() sin()
az el

el az el az el

































v
v

v

x

y

z

.

See Also azelaxes | cart2sphvec

2-369

spsmooth

Purpose Spatial smoothing

Syntax RSM = spsmooth(R,L)
RSM = spsmooth(R,L,'fb')

Description RSM = spsmooth(R,L) computes an averaged spatial covariance
matrix, RSM, from the full spatial covariance matrix, R, using spatial
smoothing (see Van Trees [1], p. 605). Spatial smoothing creates
a smaller averaged covariance matrix over L maximum overlapped
subarrays. L is a positive integer less than N. The resulting covariance
matrix, RSM, has dimensions (N–L+1)-by-(N–L+1). Spatial smoothing is
useful when two or more signals are correlated.

RSM = spsmooth(R,L,'fb') computes an averaged covariance matrix
and at the same time performing forward-backward averaging. This
syntax can use any of the input arguments in the previous syntax.

Input
Arguments

R - Spatial covariance matrix
Complex-valued positive-definite N-by-N matrix.

Spatial covariance matrix, specified as a complex-valued,
positive-definite N-by-N matrix. In this matrix, N represents the
number of sensor elements.

Example: [4.3162, –0.2777 –0.2337i; –0.2777 + 0.2337i , 4.3162]

Data Types
double
Complex Number Support: Yes

L - Maximum number of overlapped subarrays
Positive integer

Maximum number of overlapped subarrays, specified as a positive
integer. The value L must be less than the number of sensors, N.

Example: 2

2-370

spsmooth

Data Types
double

Output
Arguments

RSM - Smoothed covariance matrix
Complex-valued M-by-M matrix

Smoothed covariance matrix, returned as a complex-valued, M-by-M
matrix. The dimension M is given by M = N–L+1.

Examples Comparison of Smoothed and Nonsmoothed Covariance
Matrices

Construct a 10-element half-wavelength-spaced uniform line array
receiving two plane waves arriving from 0° and –25° azimuth. Both
elevation angles are 0°. Assume the two signals are partially correlated.
The SNR for each signal is 5 dB. The noise is spatially and temporally
Gaussian white noise. First, create the spatial covariance matrix from
the signal and noise. Then, solve for the number of signals, using
rootmusicdoa. Next, perform spatial smoothing on the covariance
matrix, using spsmooth, and solve for the signal arrival angles, again
using rootmusicdoa.

Set up the array and signals. Then, generate the spatial covariance
matrix for the array from the signals and noise.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
angles = [0 -25];
ac = [1 1/5];
scov = ac'*ac;
R = sensorcov(elementPos,angles,db2pow(-5),scov);

Solve for the arrival angles using the original covariance matrix.

Nsig = 2;
doa = rootmusicdoa(R,Nsig)

doa =

2-371

spsmooth

0.3062 48.6810

The solved-for arrival angles are clearly wrong – they do not agree with
the known angles of arrival used to create the covariance matrix.

Next, solve for the arrival angles using the smoothed covariance matrix.

Nsig = 2;
L = 2;
RSM = spsmooth(R,L);
doasm = rootmusicdoa(RSM,Nsig)

doasm =

-25.0000 -0.0000

This time they do agree with the known angles of arrival.

References
[1] Van Trees, H.L. Optimum Array Processing. New York, NY:
Wiley-Interscience, 2002.

See Also aictest | espritdoa | mdltest | rootmusicdoa

2-372

steervec

Purpose Steering vector

Syntax sv = steervec(pos,ang)

Description sv = steervec(pos,ang) returns the steering vector sv for each
incoming plane wave or set of plane waves impinging on a sensor array.
The steering vector represents the set of phase-delays for an incoming
wave at each sensor element. The array is defined by its sensor element
positions contained in the pos argument. The incoming wave arrival
directions are specified by their azimuth and elevation angles in the ang
argument. The steering vector, sv, is an N-by-M matrix. In this matrix,
N represents the number of element positions in the sensor array
while M represents the number of incoming waves. Each column of sv
contains the steering vector for the corresponding direction specified in
ang. All elements in the sensor array are assumed to be isotropic.

Input
Arguments

pos - Positions of array sensor elements
1-by-N real-valued vector | 2-by-N real-valued matrix | 3-by-N
real-valued matrix

Positions of the elements of a sensor array specified as a 1-by-N vector,
a 2-by-N matrix, or a 3-by-N matrix. In this vector or matrix, N
represents the number of elements of the array. Each column of pos
represents the coordinates of an element. You define sensor position
units in term of signal wavelength. If pos is a 1-by-N vector, then it
represents the y-coordinate of the sensor elements of a line array. The
x and z-coordinates are assumed to be zero. If pos is a 2-by-N matrix,
then it represents the (y,z)-coordinates of the sensor elements of a
planar array which is assumed to lie in the yz-plane. The x-coordinates
are assumed to be zero. If pos is a 3-by-N matrix, then the array has
arbitrary shape.

Example: [0, 0, 0; .1, .2, .3; 0,0,0]

Data Types
double

ang - Arrival directions of incoming signals

2-373

steervec

1-by-M real-valued vector | 2-by-M real-valued matrix

Arrival directions of incoming signals specified as a 1-by-M vector or
a 2-by-M matrix, where M is the number of incoming signals. If ang
is a 2-by-M matrix, each column specifies the direction in azimuth and
elevation of the incoming signal [az;el]. Angular units are specified in
degrees. The azimuth angle must lie between –180° and 180° and the
elevation angle must lie between –90° and 90°. The azimuth angle is
the angle between the x-axis and the projection of the arrival direction
vector onto the xy plane. It is positive when measured from the x-axis
toward the y-axis. The elevation angle is the angle between the arrival
direction vector and xy-plane. It is positive when measured towards the
z axis. If ang is a 1-by-M vector, then it represents a set of azimuth
angles with the elevation angles assumed to be zero.

Example: [45;0]

Data Types
double

Output
Arguments

sv - Steering vector
N-by-M complex-valued matrix

Steering vector returned as an N-by-M complex-valued matrix. In this
matrix, N represents the number of sensor elements of the array and
M represents the number of incoming plane waves. Each column of sv
corresponds to a different entry in ang.

Examples Steering Vector for a Short Line-array

Specify a line array of five elements spaced 10 cm apart. Then, specify
an incoming plane wave with a frequency of 1 GHz and an arrival
direction of 45° azimuth and 0° elevation. Compute the steering vector
of this wave.

elementPos = (0:.1:.4); % meters
c = physconst('LightSpeed'); % speed of light;
fc = 1e9; % frequency
lam = c/fc; % wavelength

2-374

steervec

ang = [45;0]; % direction of arrive
sv = steervec(elementPos/lam,ang)

sv =

1.0000 + 0.0000i
0.0887 + 0.9961i

-0.9843 + 0.1767i
-0.2633 - 0.9647i
0.9376 - 0.3478i

References
[1] Van Trees, H.L. Optimum Array Processing. New York, NY:
Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile
approach to spatial filtering”. IEEE ASSP Magazine, Vol. 5 No. 2 pp.
4–24.

See Also cbfweights | lcmvweights | mvdrweights | sensorcov |
phased.SteeringVector

2-375

stokes

Purpose Stokes parameters of polarized field

Syntax G = stokes(fv)
stokes(fv)

Description G = stokes(fv) returns the four Stokes parameters G of a polarized
field or set of fields specified in fv. The field should be expressed in
terms of linear polarization components. The expression of a field in
terms of a two-row vector of linear polarization components is called
the Jones vector formalism.

stokes(fv) displays the Stokes parameters corresponding to fv as
points on the Poincare sphere.

Input
Arguments

fv - Field vector in linear polarization representation or linear
polarization ratio
1-by-N complex-value row vector or 2-by-N complex-value matrix

Field vector in its linear polarization representation specified as
a 2-by-N complex-valued matrix or in its linear polarization ratio
representation specified as a 1-by-N complex-valued row vector. If fv
is a matrix, each column of fv represents a field in the form [Eh;Ev],
where Eh and Ev are its horizontal and vertical linear polarization
components. The expression of a field in terms of a two-row vector of
linear polarization components is called the Jones vector formalism. If
fv is a vector, each entry in fv is contains the polarization ratio, Ev/Eh.

Example: [sqrt(2)/2*1i; 1]

Data Types
double
Complex Number Support: Yes

2-376

stokes

Output
Arguments

G - Stokes parameters
4-by-N matrix of Stokes parameters.

G contains the four Stokes parameters for each polarized field specified
in fv. The Stokes parameters are computed from combinations of
intensities of the field:

• G0 describes the total intensity of the field.

• G1 describes the preponderance of horizontal linear polarization
intensity over vertical linear polarization intensity.

• G2 describes the preponderance of +45° linear polarization intensity
over -45° linear polarization intensity.

• G3 describes the preponderance of right circular polarization
intensity over left circular polarization intensity.

Examples Stokes Vector

Create a left circularly-polarized field. Convert it to a linear
representation and compute the Stokes vector.

cfv = [2;0];
fv = circpol2pol(cfv);
G=stokes(fv)

G =

4.0000
0
0

4.0000

Poincare Sphere

Display points on the Poincare sphere for a left circularly-polarized field
and a 45 degree linear polarized field.

fv = [sqrt(2)/2, 1; sqrt(2)/2*1i, 1];
G = stokes(fv)

2-377

stokes

stokes(fv);

G =

1.0000 2.0000
0 0
0 2.0000

1.0000 0

2-378

stokes

The point at the north pole represents the left circularly-polarized field.
The point on the equator represents the 45 degree linear polarized field.

References
[1] Mott, H., Antennas for Radar and Communications, John Wiley &
Sons, 1992.

2-379

stokes

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley
& Sons, 1998, pp. 299–302.

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge:
Cambridge University Press, 1999, pp 25–32.

See Also circpol2pol | pol2circpol | polellip | polratio

2-380

stretchfreq2rng

Purpose Convert frequency offset to range

Syntax R = stretchfreq2rng(FREQ,SLOPE,REFRNG)
R = stretchfreq2rng(FREQ,SLOPE,REFRNG,V)

Description R = stretchfreq2rng(FREQ,SLOPE,REFRNG) returns the range
corresponding to the frequency offset FREQ. The computation assumes
you obtained FREQ through stretch processing with a reference range of
REFRNG. The sweeping slope of the linear FM waveform is SLOPE.

R = stretchfreq2rng(FREQ,SLOPE,REFRNG,V) specifies the
propagation speed V.

Input
Arguments

FREQ

Frequency offset in hertz, specified as a scalar or vector.

SLOPE

Sweeping slope of the linear FM waveform, in hertz per second,
specified as a nonzero scalar.

REFRNG

Reference range, in meters, specified as a scalar.

V

Propagation speed, in meters per second, specified as a positive scalar.

Default: Speed of light

Output
Arguments

R

Range in meters. R has the same dimensions as FREQ .

2-381

stretchfreq2rng

Examples Range Corresponding to Frequency Offset

Calculate the range corresponding to a frequency offset of 2 kHz
obtained from stretch processing. Assume the reference range is 5000
m and the linear FM waveform has a sweeping slope of 2 GHz/s.

r = stretchfreq2rng(2e3,2e9,5000);

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also phased.LinearFMWaveform | phased.StretchProcessor | ambgfun |
beat2range | range2beat | rdcoupling

Related
Examples

• Range Estimation Using Stretch Processing

Concepts • “Stretch Processing”

2-382

../examples/range-estimation-using-stretch-processing.html

surfacegamma

Purpose Gamma value for different terrains

Syntax G = surfacegamma(TerrainType)
G = surfacegamma(TerrainType,FREQ)
surfacegamma

Description G = surfacegamma(TerrainType) returns the  value for the specified
terrain. The  value is for an operating frequency of 10 GHz.

G = surfacegamma(TerrainType,FREQ) specifies the operating
frequency of the system.

surfacegamma displays several terrain types and their corresponding 
values. These  values are for an operating frequency of 10 GHz.

Input
Arguments

TerrainType

String that describes type of terrain. Valid values are:

• 'sea state 3'

• 'sea state 5'

• 'woods'

• 'metropolitan'

• 'rugged mountain'

• 'farmland'

• 'wooded hill'

• 'flatland'

FREQ

Operating frequency of radar system in hertz. This value can be a
scalar or vector.

Default: 10e9

2-383

surfacegamma

Output
Arguments

G

Value of  in decibels, for constant  clutter model.

Definitions Gamma

A frequently used model for clutter simulation is the constant
gamma model. This model uses a parameter,  , to describe clutter
characteristics of different types of terrain. Values of  are derived
from measurements.

Examples Determine the  value for a wooded area, and then simulate the clutter
return from the area. Assume the radar system uses a single cosine
pattern antenna element and an operating frequency of 300 MHz.

fc = 300e6;
g = surfacegamma('woods',fc);
hclutter = phased.ConstantGammaClutter('Gamma',g,...

'Sensor',phased.CosineAntennaElement,...
'OperatingFrequency',fc);

x = step(hclutter);
r = (0:numel(x)-1) / (2*hclutter.SampleRate) * ...

hclutter.PropagationSpeed;
plot(r,abs(x));
xlabel('Range (m)'); ylabel('Clutter Magnitude (V)');
title('Clutter Return vs. Range');

2-384

surfacegamma

Algorithms The  values for the terrain types 'sea state 3', 'sea state 5',
'woods', 'metropolitan', and 'rugged mountain' are from [2].

The  values for the terrain types 'farmland', 'wooded hill', and
'flatland' are from [3].

Measurements provide values of  for a system operating at 10 GHz.
The  value for a system operating at frequency f is:

2-385

surfacegamma

  








0

0
5log

f
f

where 0 is the value at frequency f0 = 10 GHz.

References [1] Barton, David. “Land Clutter Models for Radar Design and
Analysis,” Proceedings of the IEEE. Vol. 73, Number 2, February, 1985,
pp. 198–204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar
Design Principles, 2nd Ed. Mendham, NJ: SciTech Publishing, 1999.

See Also grazingang | horizonrange | phased.ConstantGammaClutter

2-386

surfclutterrcs

Purpose Surface clutter radar cross section (RCS)

Syntax RCS = surfclutterrcs(NRCS,R,az,el,graz,tau)
RCS = surfclutterrcs(NRCS,R,az,el,graz,tau,c)

Description RCS = surfclutterrcs(NRCS,R,az,el,graz,tau) returns the radar
cross section (RCS) of a clutter patch that is of range R meters away
from the radar system. az and el are the radar system azimuth and
elevation beamwidths, respectively, corresponding to the clutter patch.
graz is the grazing angle of the clutter patch relative to the radar.
tau is the pulse width of the transmitted signal. The calculation
automatically determines whether the surface clutter area is beam
limited or pulse limited, based on the values of the input arguments.

RCS = surfclutterrcs(NRCS,R,az,el,graz,tau,c) specifies the
propagation speed in meters per second.

Tips • You can calculate the clutter-to-noise ratio using the output of this
function as the RCS input argument value in radareqsnr.

Input
Arguments

NRCS

Normalized radar cross section of clutter patch in units of square
meters/square meters.

R

Range of clutter patch from radar system, in meters.

az

Azimuth beamwidth of radar system corresponding to clutter patch,
in degrees.

el

Elevation beamwidth of radar system corresponding to clutter patch,
in degrees.

2-387

surfclutterrcs

graz

Grazing angle of clutter patch relative to radar system, in degrees.

tau

Pulse width of transmitted signal, in seconds.

c

Propagation speed, in meters per second.

Default: Speed of light

Output
Arguments

RCS

Radar cross section of clutter patch.

Examples Calculate the RCS of a clutter patch and estimate the clutter-to-noise
ratio at the receiver. Assume that the patch has an NRCS of 1 m2/m2

and is 1000 m away from the radar system. The azimuth and elevation
beamwidths are 1 degree and 3 degrees, respectively. The grazing angle
is 10 degrees. The pulse width is 10 µs. The radar is operated at a
wavelength of 1 cm with a peak power of 5 kw.

nrcs = 1; rng = 1000;
az = 1; el = 3; graz = 10;
tau = 10e-6; lambda = 0.01; ppow = 5000;
rcs = surfclutterrcs(nrcs,rng,az,el,graz,tau);
cnr = radareqsnr(lambda,rng,ppow,tau,'rcs',rcs);

Algorithms See [1].

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005, pp. 57–63.

See Also grazingang | surfacegamma | radareqsnr | uv2azel | phitheta2azel

2-388

systemp

Purpose Receiver system-noise temperature

Syntax STEMP = systemp(NF)
STEMP = systemp(NF,REFTEMP)

Description STEMP = systemp(NF) calculates the effective system-noise
temperature, STEMP, in kelvin, based on the noise figure, NF. The
reference temperature is 290 K.

STEMP = systemp(NF,REFTEMP) specifies the reference temperature.

Input
Arguments

NF

Noise figure in decibels. The noise figure is the ratio of the actual output
noise power in a receiver to the noise power output of an ideal receiver.

REFTEMP

Reference temperature in kelvin, specified as a nonnegative scalar. The
output of an ideal receiver has a white noise power spectral density
that is approximately the Boltzmann constant times the reference
temperature in kelvin.

Default: 290

Output
Arguments

STEMP

Effective system-noise temperature in kelvin. The effective system-noise
temperature is REFTEMP*10^(NF/10).

Examples Calculate the system-noise temperature of a receiver with a 300 K
reference temperature and a 5 dB noise figure.

stemp = systemp(5,300);

References [1] Skolnik, M. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

2-389

systemp

See Also noisepow | phased.ReceiverPreamp

2-390

time2range

Purpose Convert propagation time to propagation distance

Syntax r = time2range(t)
r = time2range(t,c)

Description r = time2range(t) returns the distance a signal propagates during t
seconds. The propagation is assumed to be two-way, as in a monostatic
radar system.

r = time2range(t,c) specifies the signal propagation speed.

Input
Arguments

t - Propagation time
array of positive numbers

Propagation time in seconds, specified as an array of positive numbers.

c - Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per
second.

Data Types
double

Output
Arguments

r - Propagation distance
array of positive numbers

Propagation distance in meters, returned as an array of positive
numbers. The dimensions of r are the same as those of t.

Data Types
double

Algorithms The function computes c*t/2.

2-391

time2range

Examples Minimum Detectable Range for Specified Pulse Width

Calculate the minimum detectable range for a monostatic radar system
where the pulse width is 2 ms.

t = 2e-3;
r = time2range(t);

References
[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also range2time | range2bw | phased.FMCWWaveform

2-392

unigrid

Purpose Uniform grid

Syntax Grid = unigrid(StartValue,Step,EndValue)
Grid = unigrid(StartValue,Step,EndValue,IntervalType)

Description Grid = unigrid(StartValue,Step,EndValue) returns a uniformly
sampled grid from the closed interval [StartValue,EndValue], starting
from StartValue. Step specifies the step size. This syntax is the same
as calling StartValue:Step:EndValue.

Grid = unigrid(StartValue,Step,EndValue,IntervalType)
specifies whether the interval is closed, or semi-open. Valid values
of IntervalType are '[]' (default), and '[)'. Specifying a closed
interval does not always cause Grid to contain the value EndValue.
The inclusion of EndValue in a closed interval also depends on the
step size Step.

Examples Create a uniform closed interval with a positive step.

Grid = unigrid(0,0.1,1);
% Note that Grid(1)=0 and Grid(end)=1

Create semi-open interval.

Grid = unigrid(0,0.1,1,'[)');
% Grid(1)=0 and Grid(end)=0.9

See Also linspace | val2ind

2-393

uv2azel

Purpose Convert u/v coordinates to azimuth/elevation angles

Syntax AzEl = uv2azel(UV)

Description AzEl = uv2azel(UV) converts the u/v space coordinates to their
corresponding azimuth/elevation angle pairs.

Input
Arguments

UV - Angle in u/v space
two-row matrix

Angle in u/v space, specified as a two-row matrix. Each column of
the matrix represents a pair of coordinates in the form [u; v]. Each
coordinate is between –1 and 1, inclusive. Also, each pair must satisfy
u2 + v2≤ 1.

Data Types
double

Output
Arguments

AzEl - Azimuth/elevation angle pairs
two-row matrix

Azimuth and elevation angles, returned as a two-row matrix. Each
column of the matrix represents an angle in degrees, in the form
[azimuth; elevation]. The matrix dimensions of AzEl are the same as
those of UV.

Definitions U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

2-394

uv2azel

u = cos(el) sin(az)

v = sin(el)

The values of u and v satisfy the inequalities

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v

tan(φ) = v/u

sin(θ) = sqrt(u2 + v2)

The azimuth and elevation angles can also be written in terms of u and v

sin(el) = v

tan(az) = u/sqrt(1 – u2 – v2)

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2-395

uv2azel

The coordinate transformations between φ/θ and az/el are described
by the following equations

sin() sin sin
tan() cos tan

cos cos()cos()
tan ta

el
az

el az







 
 


 nn() / sin()el az

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

2-396

uv2azel

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Examples Conversion of U/V Coordinates

Find the corresponding azimuth/elevation representation for
u = 0.5 and v = 0.

AzEl = uv2azel([0.5; 0]);

See Also azel2uv

Concepts • “Spherical Coordinates”

2-397

uv2azelpat

Purpose Convert radiation pattern from u/v form to azimuth/elevation form

Syntax pat_azel = uv2azelpat(pat_uv,u,v)
pat_azel = uv2azelpat(pat_uv,u,v,az,el)
[pat_azel,az,el] = uv2azelpat(___)

Description pat_azel = uv2azelpat(pat_uv,u,v) expresses the antenna
radiation pattern pat_azel in azimuth/elevation angle coordinates
instead of u/v space coordinates. pat_uv samples the pattern at u
angles in u and v angles in v. The pat_azel matrix uses a default
grid that covers azimuth values from –90 to 90 degrees and elevation
values from –90 to 90 degrees. In this grid, pat_azel is uniformly
sampled with a step size of 1 for azimuth and elevation. The function
interpolates to estimate the response of the antenna at a given direction.

pat_azel = uv2azelpat(pat_uv,u,v,az,el) uses vectors az and el
to specify the grid at which to sample pat_azel. To avoid interpolation
errors, az should cover the range [–90, 90] and el should cover the
range [–90, 90].

[pat_azel,az,el] = uv2azelpat(___) returns vectors containing the
azimuth and elevation angles at which pat_azel samples the pattern,
using any of the input arguments in the previous syntaxes.

Input
Arguments

pat_uv - Antenna radiation pattern in u/v form
Q-by-P matrix

Antenna radiation pattern in u/v form, specified as a Q-by-P matrix.
pat_uv samples the 3-D magnitude pattern in decibels in terms of u
and v coordinates. P is the length of the u vector and Q is the length
of the v vector.

Data Types
double

u - u coordinates
vector of length P

2-398

uv2azelpat

u coordinates at which pat_uv samples the pattern, specified as a vector
of length P. Each coordinate is between –1 and 1.

Data Types
double

v - v coordinates
vector of length Q

v coordinates at which pat_uv samples the pattern, specified as a vector
of length Q. Each coordinate is between –1 and 1.

Data Types
double

az - Azimuth angles
[-90:90] (default) | vector of length L

Azimuth angles at which pat_azel samples the pattern, specified as
a vector of length L. Each azimuth angle is in degrees, between –90
and 90. Such azimuth angles are in the hemisphere for which u and v
are defined.

Data Types
double

el - Elevation angles
[-90:90] (default) | vector of length M

Elevation angles at which pat_azel samples the pattern, specified as
a vector of length M. Each elevation angle is in degrees, between –90
and 90.

Data Types
double

Output
Arguments

pat_azel - Antenna radiation pattern in azimuth/elevation form
M-by-L matrix

Antenna radiation pattern in azimuth/elevation form, returned as
an M-by-L matrix. pat_azel samples the 3-D magnitude pattern in

2-399

uv2azelpat

decibels, in terms of azimuth and elevation angles. L is the length of
the az vector, and M is the length of the el vector.

az - Azimuth angles
vector of length L

Azimuth angles at which pat_azel samples the pattern, returned as a
vector of length L. Angles are expressed in degrees.

el - Elevation angles
vector of length M

Elevation angles at which pat_azel samples the pattern, returned as a
vector of length M. Angles are expressed in degrees.

Definitions U/V Space

The u and v coordinates are the direction cosines of a vector with
respect to the y-axis and z-axis, respectively.

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u = cos(el) sin(az)

v = sin(el)

The values of u and v satisfy the inequalities

–1 ≤ u ≤ 1

2-400

uv2azelpat

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v

tan(φ) = v/u

sin(θ) = sqrt(u2 + v2)

The azimuth and elevation angles can also be written in terms of u and v

sin(el) = v

tan(az) = u/sqrt(1 – u2 – v2)

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2-401

uv2azelpat

The coordinate transformations between φ/θ and az/el are described
by the following equations

sin() sin sin
tan() cos tan

cos cos()cos()
tan ta

el
az

el az







 
 


 nn() / sin()el az

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

2-402

uv2azelpat

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Examples Conversion of Radiation Pattern

Convert a radiation pattern to azimuth/elevation form, with the angles
spaced 1 degree apart.

Define the pattern in terms of u and v. For values outside the unit
circle, u and v are undefined and the pattern value is 0.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);

2-403

uv2azelpat

pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to azimuth/elevation space.

pat_azel = uv2azelpat(pat_uv,u,v);

Plot Converted Radiation Pattern

Convert a radiation pattern to azimuth/elevation form, with the angles
spaced one degree apart.

Define the pattern in terms of and . For values outside the unit
circle, and are undefined and the pattern value is 0.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to azimuth/elevation space. Store the azimuth and
elevation angles to use them for plotting.

[pat_azel,az,el] = uv2azelpat(pat_uv,u,v);

Plot the result.

H = surf(az,el,pat_azel);
set(H,'LineStyle','none')
xlabel('Azimuth (degrees)');
ylabel('Elevation (degrees)');
zlabel('Pattern');

2-404

uv2azelpat

Convert Radiation Pattern Using Specific Azimuth/Elevation
Values

Convert a radiation pattern to azimuth/elevation form, with the angles
spaced five degrees apart.

Define the pattern in terms of and . For values outside the unit
circle, and are undefined and the pattern value is 0.

u = -1:0.01:1;

2-405

uv2azelpat

v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Define the set of azimuth and elevation angles at which to sample the
pattern. Then convert the pattern.

az = -90:5:90;
el = -90:5:90;
pat_azel = uv2azelpat(pat_uv,u,v,az,el);

Plot the result.

H = surf(az,el,pat_azel);
set(H,'LineStyle','none')
xlabel('Azimuth (degrees)');
ylabel('Elevation (degrees)');
zlabel('Pattern');

2-406

uv2azelpat

See Also phased.CustomAntennaElement | uv2azel | azel2uv | azel2uvpat

Concepts • “Spherical Coordinates”

2-407

uv2phitheta

Purpose Convert u/v coordinates to phi/theta angles

Syntax PhiTheta = uv2phitheta(UV)

Description PhiTheta = uv2phitheta(UV) converts the u/v space coordinates to
their corresponding phi/theta angle pairs.

Input
Arguments

UV - Angle in u/v space
two-row matrix

Angle in u/v space, specified as a two-row matrix. Each column of
the matrix represents a pair of coordinates in the form [u; v]. Each
coordinate is between –1 and 1, inclusive. Also, each pair must satisfy
u2 + v2≤ 1.

Data Types
double

Output
Arguments

PhiTheta - Phi/theta angle pairs
two-row matrix

Phi and theta angles, returned as a two-row matrix. Each column of
the matrix represents an angle in degrees, in the form [phi; theta]. The
matrix dimensions of PhiTheta are the same as those of UV.

Definitions U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

2-408

uv2phitheta

u = cos(el) sin(az)

v = sin(el)

The values of u and v satisfy the inequalities

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v

tan(φ) = v/u

sin(θ) = sqrt(u2 + v2)

The azimuth and elevation angles can also be written in terms of u and v

sin(el) = v

tan(az) = u/sqrt(1 – u2 – v2)

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2-409

uv2phitheta

The coordinate transformations between φ/θ and az/el are described
by the following equations

sin() sin sin
tan() cos tan

cos cos()cos()
tan ta

el
az

el az







 
 


 nn() / sin()el az

Examples Conversion of U/V Coordinates

Find the corresponding φ/θ representation for u = 0.5 and v = 0.

PhiTheta = uv2phitheta([0.5; 0]);

See Also phitheta2uv

Concepts • “Spherical Coordinates”

2-410

uv2phithetapat

Purpose Convert radiation pattern from u/v form to phi/theta form

Syntax pat_phitheta = uv2phithetapat(pat_uv,u,v)
pat_phitheta = uv2phithetapat(pat_uv,u,v,phi,theta)
[pat_phitheta,phi,theta] = uv2phithetapat(___)

Description pat_phitheta = uv2phithetapat(pat_uv,u,v) expresses the antenna
radiation pattern pat_phitheta in φ/θ angle coordinates instead of
u/v space coordinates. pat_uv samples the pattern at u angles in u
and v angles in v. The pat_phitheta matrix uses a default grid that
covers φ values from 0 to 360 degrees and θ values from 0 to 90 degrees.
In this grid, pat_phitheta is uniformly sampled with a step size of
1 for φ and θ. The function interpolates to estimate the response of
the antenna at a given direction.

pat_phitheta = uv2phithetapat(pat_uv,u,v,phi,theta) uses
vectors phi and theta to specify the grid at which to sample
pat_phitheta. To avoid interpolation errors, phi should cover the
range [0, 360], and theta should cover the range [0, 90].

[pat_phitheta,phi,theta] = uv2phithetapat(___) returns vectors
containing the φ and θ angles at which pat_phitheta samples the
pattern, using any of the input arguments in the previous syntaxes.

Input
Arguments

pat_uv - Antenna radiation pattern in u/v form
Q-by-P matrix

Antenna radiation pattern in u/v form, specified as a Q-by-P matrix.
pat_uv samples the 3-D magnitude pattern in decibels, in terms of u
and v coordinates. P is the length of the u vector, and Q is the length
of the v vector.

Data Types
double

u - u coordinates
vector of length P

2-411

uv2phithetapat

u coordinates at which pat_uv samples the pattern, specified as a vector
of length P. Each coordinate is between –1 and 1.

Data Types
double

v - v coordinates
vector of length Q

v coordinates at which pat_uv samples the pattern, specified as a vector
of length Q. Each coordinate is between –1 and 1.

Data Types
double

phi - Phi angles
[0:360] (default) | vector of length L

Phi angles at which pat_phitheta samples the pattern, specified as a
vector of length L. Each φ angle is in degrees, between 0 and 360.

Data Types
double

theta - Theta angles
[0:90] (default) | vector of length M

Theta angles at which pat_phitheta samples the pattern, specified as
a vector of length M. Each θ angle is in degrees, between 0 and 90. Such
θ angles are in the hemisphere for which u and v are defined.

Data Types
double

Output
Arguments

pat_phitheta - Antenna radiation pattern in phi/theta form
M-by-L matrix

Antenna radiation pattern in phi/theta form, returned as an M-by-L
matrix. pat_phitheta samples the 3-D magnitude pattern in decibels,
in terms of φ and θ angles. L is the length of the phi vector, and M
is the length of the theta vector.

2-412

uv2phithetapat

phi - Phi angles
vector of length L

Phi angles at which pat_phitheta samples the pattern, returned as a
vector of length L. Angles are expressed in degrees.

theta - Theta angles
vector of length M

Theta angles at which pat_phitheta samples the pattern, returned as
a vector of length M. Angles are expressed in degrees.

Definitions U/V Space

The u and v coordinates are the direction cosines of a vector with
respect to the y-axis and z-axis, respectively.

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u = cos(el) sin(az)

v = sin(el)

The values of u and v satisfy the inequalities

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

2-413

uv2phithetapat

Conversely, the phi and theta angles can be written in terms of u and v

tan(φ) = v/u

sin(θ) = sqrt(u2 + v2)

The azimuth and elevation angles can also be written in terms of u and v

sin(el) = v

tan(az) = u/sqrt(1 – u2 – v2)

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2-414

uv2phithetapat

The coordinate transformations between φ/θ and az/el are described
by the following equations

sin() sin sin
tan() cos tan

cos cos()cos()
tan ta

el
az

el az







 
 


 nn() / sin()el az

Examples Conversion of Radiation Pattern

Convert a radiation pattern to φ/θ form, with the angles spaced 1
degree apart.

Define the pattern in terms of u and v. For values outside the unit
circle, u and v are undefined, and the pattern value is 0.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to φ/θ space.

[pat_phitheta,phi,theta] = uv2phithetapat(pat_uv,u,v);

Plot Converted Radiation Pattern

Convert a radiation pattern to space with the angles spaced one
degree apart.

Define the pattern in terms of and . For values outside the unit
circle, and are undefined, and the pattern value is 0.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);

2-415

uv2phithetapat

pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to space. Store the and angles for use
in plotting.

[pat_phitheta,phi,theta] = uv2phithetapat(pat_uv,u,v);

Plot the result.

H = surf(phi,theta,pat_phitheta);
set(H,'LineStyle','none')
xlabel('Phi (degrees)');
ylabel('Theta (degrees)');
zlabel('Pattern');

2-416

uv2phithetapat

Convert Radiation Pattern Using Specific Phi/Theta Values

Convert a radiation pattern to space with the angles spaced five
degrees apart.

Define the pattern in terms of and . For values outside the unit
circle, and are undefined, and the pattern value is 0.

u = -1:0.01:1;
v = -1:0.01:1;

2-417

uv2phithetapat

[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Define the set of and angles at which to sample the pattern. Then,
convert the pattern.

phi = 0:5:360;
theta = 0:5:90;
pat_phitheta = uv2phithetapat(pat_uv,u,v,phi,theta);

Plot the result.

H = surf(phi,theta,pat_phitheta);
set(H,'LineStyle','none')
xlabel('Phi (degrees)');
ylabel('Theta (degrees)');
zlabel('Pattern');

2-418

uv2phithetapat

See Also phased.CustomAntennaElement | uv2phitheta | phitheta2uv |
phitheta2uvpat

Concepts • “Spherical Coordinates”

2-419

val2ind

Purpose Uniform grid index

Syntax Ind = val2ind(Value,Delta)
Ind = val2ind(Value,Delta,GridStartValue)

Description Ind = val2ind(Value,Delta) returns the index of the value Value
in a uniform grid with a spacing between elements of Delta. The
first element of the uniform grid is zero. If Value does not correspond
exactly to an element of the grid, the next element is returned. If Value
is a row vector, Ind is a row vector of the same size.

Ind = val2ind(Value,Delta,GridStartValue) specifies the starting
value of the uniform grid as GridStartValue.

Examples Find index for 0.001 in uniform grid with 1 MHz sampling rate.

Fs = 1e6;
Ind = val2ind(0.001,1/Fs);
% Ind is 1001 because the 1st grid element is zero

Find indices for vector with 1 kHz sampling rate.

Fs = 1e3;
% Construct row vector of values
Values =[0.0095 0.0125 0.0225];
% Values not divisible by 1/Fs
% with nonzero remainder
Ind = val2ind(Values,1/Fs);
% Returns Ind =[11 14 24]

2-420

	toc
	Alphabetical List
	Load radar data file and compute weights
	Create AnglerDoppler System object and plot response
	Load data and construct AngleDopplerResponse System object
	Plot Angle-Doppler response
	Load data and construct AngleDopplerResponse System object
	Plot Angle-Doppler response
	Construct ULA and ArrayResponse System objects
	Plot the array response in dB
	Create the signals and solve for the DOA's
	Plot the beamscan spectrum
	Create the signals and solve for the DOA's
	Plot the beamscan spectrum
	Create the signals and solve for the DOA's
	Plot the beamscan spatial spectrum
	Create the signals and solve for the DOA's
	Plot the beamscan spatial spectrum
	Create a two-ring tapered disk array
	Display the taper values
	View the array
	Create the uniform circular array
	Display the positions and normal directions of the elements
	Set up radar system
	Create clutter simulation object
	Simulate clutter return
	Plot angle-Doppler response
	Set up radar system
	Create clutter simulation object
	Simulate clutter return
	Plot angle-Doppler response

	Functions-Alphabetical List
	Specify antenna pattern
	Specify radar and environment parameters
	Create radar range-height-angle data
	Plot radar range-height-angle data
	Maximum Detection Range of a Monostatic Radar
	Maximum Detection Range of a Monostatic Radar Using Multiple Pul
	Maximum Detection Range of Bistatic Radar System
	Required Transmit Power for a Bistatic Radar
	Receiver SNR for a Monostatic Radar
	Rectangular Waveform
	Linear FM Waveform
	Uniform Linear Array
	Uniform Rectangular Array
	Grating Lobes for a Rectangular Array
	Specify arbitrary array geometry
	Specify array geometry using variables

